BOOK REVIEW

Information Systems: Achieving Success by Avoiding Failure

J. Fortune and G. Peters
Published by Wiley, Chichester, 2005, 220 pp,
ISBN 0-470-86255-6

Reviewed by: Hugh Preston

Department of Information Studies, University of Wales, Llanbadarn Fawr, Aberystwyth SY23 3AS, UK

This is an excellent text that offers a perceptive critique of classic and recent models and principles as well as being a page-turner with regard to its style and vivid application of methodology. It offers valuable introductions to some of the more involved elements of information system study and also perspectives on systems failure for the seasoned researcher.

The study of information system failure carries with it a negative note, which is endorsed by the evidence of large-scale system disasters throughout the world. This text by Fortune and Peters lists many of these (mostly UK based) and provides insight into a sample of them. The fundamental premise is that of the interaction of technology with organisational values. However, this interaction is not treated as inevitably chaotic, but rather as capable of reductionist analysis and constructive management with the use of models. The text is dominated by such system models, the factors affecting their success, their failure (in many instances) and the relationships of each. With the exception of the authors’ Systems Failure Approach model, each is drawn from the works of systems theorists over the last 20 or so years. Although this approach is seemingly derivative, the application of these models is refreshingly original and enhances the models in their original form.

The evaluation of an information system’s success is a much discussed issue and the outcome of the apparent contradictions is that the criteria for evaluation are wholly single-system dependent. Fortune and Peters make no attempt to reconcile the problems that result from this, but make some pertinent observations regarding formulation of a check-list that is based on a framework for examining success of individual projects rather than fixed bench-marks. The framework is applied to a wide variety of failed system projects. One is described in detail and is notable in that this, together with other system failures, is described very frankly with no apparent need for anonymity. Certainly, these examples are eye-openers, having only been previously described by other authors in outline form.

The number of models that appear in the later chapters seems daunting initially. However, the authors have clearly been keen to avoid an excessively lengthy text and each model has a value that takes a relatively brief pause to assimilate. As ever, graphics are more effective than excessive text.

Technical criticisms are that citations appear at the end of individual chapters but there is no composite bibliography at the end of the book. Chapters have titles and numbers but the latter appear neither at the head nor foot of individual pages, slightly reducing the value of forward and backward pointers to the content of previous and forthcoming chapters.
This book advances the use of existing models in a variety of project scenarios. It also outlines some alternative views to those of the authors’ own Systems Failure Approach. The brief conclusion appropriately states that the text cannot guarantee avoidance of failure in every situation, but it awakens awareness of the need to apply rational and lateral approaches to system projects. Above all where failure occurs, it stresses the need to learn from mistakes rather than deny or conceal them.