Skip to main content
Log in

An interactive approach for multiobjective decision making

  • Theoretical Paper
  • Published:
Journal of the Operational Research Society

Abstract

We develop an interactive approach for multiobjective decision-making problems, where the solution space is defined by a set of constraints. We first reduce the solution space by eliminating some undesirable regions. We generate solutions (partition ideals) that dominate portions of the efficient frontier and the decision maker (DM) compares these with feasible solutions. Whenever the decision maker prefers a feasible solution, we eliminate the region dominated by the partition ideal. We then employ an interactive search method on the reduced solution space to help the DM further converge toward a highly preferred solution. We demonstrate our approach and discuss some variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Arbel A and Korhonen P (1996). Using aspiration levels in an interactive interior multiobjective linear programming algorithm. Eur J Oper Res 89: 193–201.

    Article  Google Scholar 

  • Benayoun R, de Montgolfier J, Tergny J and Laritchev O (1971). Linear programming with multiple objective functions: Step method (STEM). Math Program 1: 366–375.

    Article  Google Scholar 

  • Benson HP and Sayin S (1997). Towards finding global representations of the efficient set in multiple objective mathematical programming. Nav Res Log 44: 47–67.

    Article  Google Scholar 

  • Dell RF and Karwan MH (1990). An interactive MCDM weight space reduction method utilizing a Tchebycheff utility function. Nav Res Log 37: 263–277.

    Article  Google Scholar 

  • Geoffrion AM, Dyer JS and Feinberg A (1972). An interactive approach for multicriterion optimization with an application to the operation of an academic department. Mngt Sci 19: 357–368.

    Article  Google Scholar 

  • Kananen I, Korhonen P, Wallenius H and Wallenius J (1990). Multiple objective analysis of input-output models for emergency management. Oper Res 38: 193–201.

    Article  Google Scholar 

  • Karpak B, Kumcu E and Kasuganti R (1999). An application of visual interactive goal programming in vendor selection decisions: a case study. J Multi-criteria Dec Anal 8: 93–105.

    Article  Google Scholar 

  • Köksalan MM, Karwan MH and Zionts S (1984). An improved method for solving multiple criteria problems involving discrete alternatives. IEEE Trans Systems Man Cybernet 14: 24–34.

    Article  Google Scholar 

  • Köksalan M and Plante RD (2003). Interactive multi-criteria optimization for multiple response product and process design. Manufac Ser Ops Mngt 5: 334–347.

    Google Scholar 

  • Köksalan MM and Sagala PNS (1995). Interactive approaches for discrete alternative multiple criteria decision making with monotone utility functions. Mngt Sci 41: 1158–1171.

    Article  Google Scholar 

  • Korhonen P and Laakso J (1986). A visual interactive method for solving the multiple criteria problem. Eur J Oper Res 24: 277–287.

    Article  Google Scholar 

  • Korhonen P and Wallenius J (1988). A pareto race. Nav Res Log 35: 615–623.

    Article  Google Scholar 

  • Korhonen P and Wallenius J (1989). Observations regarding choice behavior in interactive multiple criteria decision-making environments: an experimental investigation. In: Lewandowski A and Stanchev I (eds). Methodology and Software in Interactive Decision Support. Springer-Verlag, Heidelberg, pp 163–170.

    Chapter  Google Scholar 

  • Lotfi V, Yoon YS and Zionts S (1997). Aspiration-based search algorithm (ABSALG) for multiple objective linear programming problems: theory and comparative tests. Mngt Sci 43: 1047–1059.

    Article  Google Scholar 

  • Malakooti B (1989). An exact interactive method for exploring the efficient facets of multiple objective linear programming problems with quasi-concave utility functions. IEEE Trans Systems Man Cybernet 18: 787–801.

    Article  Google Scholar 

  • Pertsinidis A, Grossmann IE and McRae GJ (1998). Parametric optimization of MILP programs and a framework for the parametric optimization of MINLPs. Comput Chem Eng 22: S205–S212.

    Article  Google Scholar 

  • Prasad SY, Karwan MH and Zionts S (1997). Use of convex cones in interactive multiple objective decision making. Mngt Sci 43: 723–734.

    Article  Google Scholar 

  • Ramesh R, Karwan MH and Zionts S (1989). Interactive multicriteria linear programming: an extension of the method of Zionts and Wallenius. Nav Res Log 36: 321–335.

    Article  Google Scholar 

  • Steuer RE (1977). An interactive multiple criteria linear programming procedure. TIMS Studies Mngt Sci 6: 225–239.

    Google Scholar 

  • Steuer RE (1986). Multiple Criteria Optimization: Theory, Computation and Application. Wiley: New York.

    Google Scholar 

  • Steuer RE and Choo EU (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26: 326–344.

    Article  Google Scholar 

  • Steuer RE, Silverman J and Whisman AW (1993). A combined Tchebycheff/aspiration criterion vector interactive multiobjective programming procedure. Mngt Sci 39: 1255–1260.

    Article  Google Scholar 

  • Stewart TJ (1997). Convergence and validation of interactive methods in MCDM: simulation studies. In: Karwan MH, Spronk J and Wallenius J (eds). Essays in Decision Making. Springer, Heidelberg, pp 7–18.

    Chapter  Google Scholar 

  • Wierzbicki A (1980). The use of reference objective in multi objective optimisation. In: Fandel G and Gal T (eds). Multiple Criteria Decision Making, Theory and Application. Springer-Verlag, Berlin, pp 468–486.

    Chapter  Google Scholar 

  • Zionts S and Wallenius J (1976). An interactive programming method for solving the multiple criteria problem. Mngt Sci 22: 652–663.

    Article  Google Scholar 

  • Zionts S and Wallenius J (1983). An interactive multiple objective linear programming for a class of underlying nonlinear utility functions. Mngt Sci 29: 519–529.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Köksalan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köksalan, M., Karasakal, E. An interactive approach for multiobjective decision making. J Oper Res Soc 57, 532–540 (2006). https://doi.org/10.1057/palgrave.jors.2602019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/palgrave.jors.2602019

Keywords

Navigation