Skip to main content
Log in

Fifty years of operational research and emergency response

  • Special Issue Paper
  • Published:
Journal of the Operational Research Society

Abstract

Over the past 50 years, a wealth of applications has resulted from researchers turning their attention to operations such as fire suppression, law enforcement and ambulance services. The 1970s might even be argued as the ‘golden age’ of this particular effort, producing many of the seminal works in fire station location planning, unit assignment and ambulance queuing models. Such efforts naturally continue through to the present, but with a focus shifting away from earlier contexts of established urban emergency service systems. Simultaneously, current evidence from the field suggests that far more work remains. In this paper, we review the operational research (OR) foundation in emergency response so far, highlighting the fact that most of what has been accomplished addresses the well-structured problems of emergency services. This, in turn, offers an explanation for some paradoxical challenges from the field: most of emergency response itself is semi-structured, at best. While OR has traditionally focused on the management of an organization, emergency response ultimately requires the management of disorganization, suggesting an important OR growth area for the next 50 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3

References

  • Adrian C (1983). Analyzing service equity—Fire services in sydney. Environ Plann 15(8): 1083–1100.

    Article  Google Scholar 

  • Altay N and Green WG (2006). OR/MS research in disaster operations management. Eur J Opl Res 175(1): 475–493.

    Article  Google Scholar 

  • Aly AA and White JA (1978). Probabilistic formulation of emergency service location problem. J Opl Res Soc 29(12): 1167–1179.

    Article  Google Scholar 

  • Anderson T and Varbrand P (2007). Decision support tools for ambulance dispatch and relocation. J Opl Res Soc 29(2): 195–201.

    Article  Google Scholar 

  • Armacost RL (1992). A 0–1 nonlinear-programming model for coast guard fisheries law-enforcement aircraft patrols. Eur J Opl Res 56(2): 134–145.

    Article  Google Scholar 

  • Armstrong RD and Cook WD (1979). Goal programming models for assigning and rescue aircraft to bases. J Opl Res Soc 30(6): 555–561.

    Article  Google Scholar 

  • Barbarosoglu G and Arda Y (2004). A two-stage stochastic programming framework for transportation planning in disaster response. J Opl Res Soc 55(1): 43–53.

    Article  Google Scholar 

  • Barbarosoglu G, Ozdamar L and Cevik A (2002). An interactive approach for hierarchical analysis of helicopter logistics in disaster relief operations. Eur J Opl Res 140(1): 118–133.

    Article  Google Scholar 

  • Batta R (1989). A queuing location model with expected service time-dependant queuing disciplines. Eur J Opl Res 39(2): 192–205.

    Article  Google Scholar 

  • Benveniste R (1985). Solving the combined zoning and location problem for several emergency units. J Opl Res Soc 36(5): 433–450.

    Article  Google Scholar 

  • Bianchi G and Church RL (1988). A hybrid fleet model for emergency medical-service system-design. Soc Sci Med 26(1): 163–171.

    Article  Google Scholar 

  • Birge JR and Pollock SM (1989). Modeling rural police patrol. J Opl Res Soc 40(1): 41–54.

    Article  Google Scholar 

  • Blake L and Coupe RT (2001). The impact of single and two-officer patrols on catching burglars in the act. Br J Criminol 41(2): 381–396.

    Article  Google Scholar 

  • Brotcorne L, Laporte G and Semet F (2003). Ambulance location and relocation models. Eur J Opl Res 147(3): 451–463.

    Article  Google Scholar 

  • Brown GG and Vassiliou AL (1993). Optimizing disaster relief—Real-time operational and tactical decision support. Nav Res Log 40(1): 1–23.

    Article  Google Scholar 

  • Brueckner JK (1981). Congested public-goods—The case of fire protection. J Public Econ 15(1): 45–58.

    Article  Google Scholar 

  • Buck DA, Trainor JE and Aguirre BE (2006). A critical evaluation of the incident command system and NIMS. J Homel Sec Emerg Mngt 3(3): 1–27.

    Google Scholar 

  • Chaiken JM and Larson RC (1973). Methods for allocating urban emergency units: A survey. Mngt Sci 16(4): 110–130.

    Google Scholar 

  • Chaiken JM and Dormont P (1978a). A patrol car allocation model: Background. Mngt Sci 24(12): 1280–1290.

    Article  Google Scholar 

  • Chaiken JM and Dormont P (1978b). Patrol car allocation model—Capabilities and algorithms. Mngt Sci 24(12): 1291–1300.

    Article  Google Scholar 

  • Chaiken JM, Ignall E, Kolesar P and Walker W (1980). Response to communication on rand–Hud fire models. Mngt Sci 26(4): 422–432.

    Article  Google Scholar 

  • Chang MS, Tseng YL and Chen JW (2007). A scenario planning approach for the flood emergency logistics preparation problem under uncertainty. Transport Res E-Log 43(6): 737–754.

    Article  Google Scholar 

  • Checkland PB (1981). Systems Thinking, Systems Practice . John Wiley: Chichester, UK.

    Google Scholar 

  • Chelst KR (1981). Deployment of one-officer vs 2-officer patrol units—A comparison of travel-times. Mngt Sci 27(2): 213–230.

    Article  Google Scholar 

  • Chiu YC and Zheng H (2007). Real-time mobilization decisions for multi-priority emergency response resources and evacuation groups: Model formulation and solution. Transport Res E-Log 43(6): 710–736.

    Article  Google Scholar 

  • Chu SCK and Lin CKY (1993). A manpower allocation model of job specialization. J Opl Res Soc 44: 983–989.

    Article  Google Scholar 

  • Church R, Sorensen P and Corrigan W (2001). Manpower deployment in emergency services. Fire Technol 37(3): 219–234.

    Article  Google Scholar 

  • Corbett CJ and Van Wassenhove LN (1993). The natural drift: What happened to operations research? Opns Res 41(4): 625–640.

    Article  Google Scholar 

  • D'Amico SJ, Wang SJ and Batta R (2002). A simulated annealing approach to police district design. Comput & Opns Res 29: 667–684.

    Article  Google Scholar 

  • Daskin MS and Haghani A (1984). Multiple vehicle-routing and dispatching to an emergency scene. Environ Plann 16(10): 1349–1359.

    Article  Google Scholar 

  • Daskin MS and Stern EH (1981). A hierarchical objective set covering model for emergency medical-service vehicle deployment. Transport Sci 15(2): 137–152.

    Article  Google Scholar 

  • Daskin MS, Hogan K and Revelle C (1988). Integration of multiple, excess, backup, and expected covering models. Environ Plann B 15(1): 15–35.

    Article  Google Scholar 

  • Denizel M, Usdiken B and Tuncalp D (2003). Drift or shift? Continuity, change and international variation in knowledge production. OR/MS Opns Res 51(5): 711–729.

    Article  Google Scholar 

  • Eaton DJ, Daskin MS and Simmons D (1985). Determining emergency medical-service vehicle deployment in Austin, Texas. Interfaces 15(1): 96–108.

    Article  Google Scholar 

  • Eaton DJ, Sanchez HM and Lantigua RR (1986). Determining ambulance deployment in Santo-Domingo, Dominical-Republic. J Opl Res Soc 37(2): 113–126.

    Article  Google Scholar 

  • Edwards JS, Hall MJ and Shaw D (2005). Proposing a systems vision of knowledge management in emergency care. J Opl Res Soc 56(2): 180–192.

    Article  Google Scholar 

  • Eiserer T (2008). Dallas police, firefighters frustrated with automated dispatch system. The Dallas Morning News, 9 March, 2008.

  • Erkut H and Polat S (1992). A simulation-model for an urban fire fighting system. Omega-Int J Mngt S 20(4): 535–542.

    Article  Google Scholar 

  • Fitzgerald G and Russo NL (2005). The turnaround of the London ambulance service computer-aided dispatch system (LASCAD). Eur J Inform Syst 14(3): 244–257.

    Article  Google Scholar 

  • Fitzsimmons JA (1973). A methodology for emergency ambulance deployment. Mngt Sci 19(6): 627–636.

    Article  Google Scholar 

  • Freeman JM (1992). Planning police staffing levels. J Opl Res Soc 43(3): 187–194.

    Article  Google Scholar 

  • Fritz Institute (2005). Lessons from the Tsunami: Survey of Affected Families in India and Sri Lanka . Fritz Institute: San Francisco.

  • Fritz Institute (2007). Humanitarian Logistics: Enabling Disaster Response . Fritz Institute: San Francisco.

  • Fritz L (2007). Making Global Connections: One Organization Attempts to Mend the Disconnect in Disaster Response. San Francisco Med, 20–21 March.

  • Fry MJ, Magazine MJ and Rao US (2006). Firefighter staffing including temporary absences and wastage. Opns Res 54(2): 353–365.

    Article  Google Scholar 

  • Fujiwara O, Makjamroen T and Gupta KK (1987). Ambulance deployment analysis—A case-study of Bangkok. Eur J Opl Res 31(1): 9–18.

    Article  Google Scholar 

  • Gendreau M, Laporte G and Semet F (2006). The maximal expected coverage relocation problem for emergency vehicles. J Opl Res Soc 57(1): 22–28.

    Article  Google Scholar 

  • Gheorghe AV and Vamanu D (1995). A pilot decision-support system for nuclear-power emergency management. Safety Sci 20(1): 13–26.

    Article  Google Scholar 

  • Grant HD, Murray RH and Bergeron JD (1994). Emergency Care, 6th edn.. Brady/Prentice-Hall: Englewood Cliffs, New Jersey.

    Google Scholar 

  • Green LV (1984). A multiple dispatch queuing model of police patrol operations. Mngt Sci 30(6): 653–664.

    Article  Google Scholar 

  • Green LV and Kolesar PJ (1984). The feasibility of one-officer patrol in New-York-City. Mngt Sci 30(8): 964–981.

    Article  Google Scholar 

  • Green LV and Kolesar PJ (1989). Testing the validity of a queuing model of police patrol. Mngt Sci 35(2): 127–148.

    Article  Google Scholar 

  • Green LV and Kolesar PJ (2004). Improving emergency responsiveness with management science. Mngt Sci 50(8): 1001–1014.

    Article  Google Scholar 

  • Gregory WJ and Midgley G (2000). Planning for disaster: Developing a multi-agency counseling service. J Opl Res Soc 51: 278–290.

    Article  Google Scholar 

  • Haddow GD and Bullock JA (2006). Introduction to Emergency Management, 2nd edn.. Elsevier Butterworth-Heinemann: Burlington, MA.

    Google Scholar 

  • Haghani A and Oh SC (1996). Formulation and solution of a multi-commodity, multi-modal network flow model for disaster relief operations. Transport Res A-Pol 30(3): 231–250.

    Google Scholar 

  • Haghani A, Tian Q and Hu HJ (2004). Simulation model for real-time emergency vehicle dispatching and routing. Transp Network Mod 1882: 176–183.

    Google Scholar 

  • Hall RW (1984). Travel distance through transportation terminals on a rectangular grid. J Opl Res Soc 35(12): 1067–1078.

    Article  Google Scholar 

  • Hall RW (2002). Incident dispatching, clearance and delay. Transport Res A-Pol 36(1): 1–16.

    Article  Google Scholar 

  • Halpern J (1979). Fire loss reduction—Fire detectors vs fire stations. Mngt Sci 25(11): 1082–1092.

    Article  Google Scholar 

  • Halpern J, Sarisamlis E and Wand Y (1982). An activity network approach for the analysis of manning policies in firefighting operations. Mngt Sci 28(10): 1121–1136.

    Article  Google Scholar 

  • Haugen DL and Hill AV (1999). Scheduling to improve field service quality. Decision Sci 30(3): 783–804.

    Article  Google Scholar 

  • Heiss FW (1974). Urban Research and Urban Policy Making: An Observatory Perspective . Bureau of Governmental Research, University of Colorado-Boulder: USA.

    Google Scholar 

  • Henandez JZ and Serrano JM (2001). Knowledge-based models for emergency management systems. Expert Syst Appl 20: 173–186.

    Article  Google Scholar 

  • Hewitt RL (2002). Siting a fire station by leveraging soft constraints and supporting science. Interfaces 32(4): 69–74.

    Article  Google Scholar 

  • Hogg J (1968). The siting of fire stations. Opl Res Q 19(3): 275–287.

    Article  Google Scholar 

  • Iakovou E, Douligeris C and Korde A (1994). A synthesis of decision-models for analysis, assessment, and contingency planning for oil-spill incidents. Omega-Int J Mngt S 22(5): 457–470.

    Article  Google Scholar 

  • Iannoni AP and Morabito R (2007). A multiple dispatch and partial backup hypercube queuing model to analyze emergency medical systems on highways. Transport Res E-Log 43(6): 755–771.

    Article  Google Scholar 

  • Ignall E and Walker WE (1977). Analysis of deployment of ambulances in Washington DC. J Urban Anal 4(1): 59–92.

    Google Scholar 

  • Ignall E, Kolesar P and Walker W (1978). Using simulation to develop and validate analytic models—Some case studies. Opns Res 26(2): 237–253.

    Article  Google Scholar 

  • Ignall E, Carter G and Rider K (1982). An algorithm for the initial dispatch of fire companies. Mngt Sci 28(4): 366–378.

    Article  Google Scholar 

  • Ingolfsson A, Erkut E and Budge S (2003). Simulation of single start station for Edmonton EMS. J Opl Res Soc 54(7): 736–746.

    Article  Google Scholar 

  • Jackson BA, Peterson DJ, Bartis JT, LaTourrette T, Brahmakulam IT, Houser A and Sollinger JM (2002). Protecting Emergency Responders: Lessons Learned from Terrorist Attacks . Rand Corporation: Santa Monica, CA.

    Google Scholar 

  • Jainshe D, Shuning W and Xiaoyin Y (1994). Computerized support systems for emergency decision making. Ann Opns Res 51: 315–325.

    Google Scholar 

  • Johnson SE, Libicki MC and Treverton GF (eds.) (2003). New Challenges and New Tools for Defense Decisionmaking. Rand Corporation: Santa Monica, CA.

  • Kirby MW (2007). Paradigm change in operations research: Thirty years of debate. Opns Res 55(1): 1–13.

    Article  Google Scholar 

  • Kobare SK and Kafka P (1992). Expert systems for emergency alarms analysis during accident situations in nuclear reactors. Reliab Eng Syst Safe 37(2): 139–149.

    Article  Google Scholar 

  • Kolesar P (1975). Model for predicting average fire engine travel times. Opns Res 23(4): 603–613.

    Article  Google Scholar 

  • Kolesar P and Blum EH (1973). Square root laws for fire engine response distances. Mngt Sci 19(12): 1368–1378.

    Article  Google Scholar 

  • Kolesar P and Walker WE (1974). An algorithm for dynamic relocation of fire companies. Opns Res 22(2): 249–274.

    Article  Google Scholar 

  • Kolesar P, Walker W and Hausner J (1975). Determining relation between fire engine travel times and travel distances in New-York-City. Opns Res 23(4): 614–627.

    Article  Google Scholar 

  • Kwak NK and Leavitt MB (1984). Police patrol beat design—Allocation of effort and evaluation of expected performance. Decis Sci 15(3): 421–433.

    Article  Google Scholar 

  • Larson RC (1972). Urban Police Patrol Analysis . MIT Press: Cambridge, MA.

    Google Scholar 

  • Larson RC (1974). Hypercube queuing model for facility location and redistricting in urban emergency services. Comput & Opns Res 1: 67–95.

    Article  Google Scholar 

  • Larson RC (2002). Public sector operations research: A personal journey. Opns Res 50(1): 135–145.

    Google Scholar 

  • Larson RC and McKnew MA (1982). Police patrol-initiated activities within a systems queuing model. Mngt Sci 28(7): 759–774.

    Article  Google Scholar 

  • Larson RC and Rich TF (1987). Travel-time analysis of New-York-City police patrol cars. Interfaces 17(2): 15–20.

    Article  Google Scholar 

  • Larson RC, Metzger MD and Cahn MF (2006). Responding to emergencies: Lessons learned and the need for analysis. Interfaces 36(6): 486–501.

    Article  Google Scholar 

  • Lee D, Kim H, Park JH and Park BJ (2003). The current status and future issues in human evacuation from ships. Safety Sci 41(10): 861–876.

    Article  Google Scholar 

  • Mabin VJ and Rand GK (1979). Problematic presentation of the emergency service location problem. J Opl Res Soc 30(9): 837.

    Article  Google Scholar 

  • Malczewski J (1990). The spatial planning of health services: Case studies in Warsaw, Poland. Prog Plann 33(2): 113–174.

    Article  Google Scholar 

  • McDonald CJ (1989). Law-enforcement simulation system. Simulation 53(3): 122–128.

    Article  Google Scholar 

  • Murray AT (2005). Geography in coverage modeling: Exploiting spatial structure to address complementary partial service of areas. Annals Ass Am Geogr 95(4): 761–772.

    Article  Google Scholar 

  • Northrup A, Kraemer KL and KNG JL (1995). Police use of computers. J Crim Just 23(3): 259–275.

    Article  Google Scholar 

  • Oh SC and Haghani (1997). Testing and evaluation of a multi-modal network flow model for disaster relief management. J Adv Transport 31(3): 249–282.

    Article  Google Scholar 

  • Olsson PA and Regan MA (2001). A comparison between actual and predicted evacuation times. Safety Sci 38(2): 139–145.

    Article  Google Scholar 

  • Ozbay K and Ozguven EE (2007). Stochastic humanitarian inventory control model for disaster planning. Transport Res Rec 2022: 63–75.

    Article  Google Scholar 

  • Papageorgiou JC (1994). The role of the public sector in introducing operations research/management science within developing countries. Public Admin Develop 14(3): 293–312.

    Article  Google Scholar 

  • Park JY and Jung WD (2003a). The operators' non-compliance behavior to conduct emergency operating procedures—Comparing the work experience and the complexity of procedural steps. Reliab Eng Syst Safe 82(2): 115–131.

    Article  Google Scholar 

  • Park JY and Jung WD (2003b). The requisite characteristics for diagnosis procedures based on the empirical findings of the operators' behavior under emergency situations. Reliab Eng Syst Safe 81(2): 197–213.

    Article  Google Scholar 

  • Park JY, Jung WD and Ha JJ (2001a). Development of the step complexity measure for emergency operation procedures using entropy concepts. Reliab Eng Syst Safe 71(2): 115–130.

    Article  Google Scholar 

  • Park JY, Jung WD, Kim J, Ha JJ and Shin Y (2001b). The step complexity measure for emergency operating procedures—comparing with simulation data. Reliab Eng Syst Safe 74(1): 63–74.

    Article  Google Scholar 

  • Park JY, Jung WD, Ha JJ and Park CK (2002). The step complexity measure for emergency operating procedures: Measure verification. Reliab Eng Syst Safe 77(2): 45–59.

    Article  Google Scholar 

  • Pezzella F, Bonanno R and Nicoletti B (1981). A system approach to the optimal health-care districting. Eur J Opl Res 8(2): 139–146.

    Article  Google Scholar 

  • Plane DR and Hendrick TE (1977). Mathematical programming and location of fire companies for denver fire department. Opns Res 25(4): 563–578.

    Article  Google Scholar 

  • Pollock SM, Rothkopf MH and Barnett A (1994). Handbooks in Operations Research and Management Science: Operations Research in the Public Sector . Amsterdam: North-Holland.

    Google Scholar 

  • Richard D, Beguin H and Peeters D (1990). The location of fire stations in a rural environment—A case-study. Environ Plann 22(1): 39–52.

    Article  Google Scholar 

  • Rider KL (1976). Parametric model for allocation of fire companies in New York City. Mngt Sci 23(2): 146–158.

    Article  Google Scholar 

  • Rider KL (1979). Economics of the distribution of municipal fire protection services. Rev Econ Stat 61(2): 249–258.

    Article  Google Scholar 

  • Sathe A and Miller-Hooks E (2005). Optimizing location and relocation of response units in guarding critical facilities. Network Model 1923: 127–136.

    Google Scholar 

  • Savas ES (1969). Simulation and cost-effectiveness analysis of New York's emergency ambulance service. Mngt Sci 18(12): 608–626.

    Article  Google Scholar 

  • Schilling DA, Revelle C, Cohon J and Elzinga DJ (1980). Some models for fire protection locational decisions. Eur J Opl Res 5(1): 1–7.

    Article  Google Scholar 

  • Schreuder JAM (1981). Application of a location model to fire stations in Rotterdam. Eur J Opl Res 6(2): 212–219.

    Article  Google Scholar 

  • Sherali HD and Subramanian S (1999). Opportunity cost-based models for traffic incident response problems. Transport Eng-J Asce 125(3): 176–185.

    Article  Google Scholar 

  • Sheu JB (2007). An emergency logistics distribution approach for quick response to urgent relief demand in disasters. Transport Res E-Log 43(6): 687–709.

    Article  Google Scholar 

  • Simpson NC (2006). Modeling of residential structure fire response: Exploring the hyper-project. J Opns Mngt 24(5): 530–541.

    Google Scholar 

  • Smith DK (1997). Police patrol policies on motorways with unequal patrol lengths. J Opl Res Soc 48(10): 996–1000.

    Article  Google Scholar 

  • Swersey AJ (1982). A markovian decision-model for deciding how many fire companies to dispatch. Mngt Sci 28(4): 352–365.

    Article  Google Scholar 

  • Taylor PE and Huxley SJ (1989). A break from tradition for the San-Francisco police-patrol officer scheduling using an optimization-based decision support system. Interfaces 19(1): 4–24.

    Article  Google Scholar 

  • Taylor BW, Moore LJ and Clayton ER (1985). An integer nonlinear goal programming-model for the deployment of state highway patrol units. Mngt Sci 31(11): 1335–1347.

    Article  Google Scholar 

  • Telford J, Cosgrove J and Houghton R (2006). Joint Evaluation of the International Response to the Indian Ocean Tsunami: Synthesis Report . Tsunami Evaluation Coalition: London.

    Google Scholar 

  • Thompson PA and Marchant EW (1995). Computer and fluid modeling of evacuation. Saf Sci 18(4): 277–289.

    Article  Google Scholar 

  • Thompson S, Altay N, Green WG III, and Lapetina J (2006). Improving disaster response efforts with decision support systems. Int J Emergen Mngt 3(4): 250–263.

    Google Scholar 

  • Toregas C, Swain R, ReVelle C and Bergman L (1971). The location of emergency service facilities. Opns Res 19: 1363–1373.

    Article  Google Scholar 

  • Tufekci S and Wallace WA (1998). The emerging area of emergency management and engineering. IEEE T Eng Mngt 45(2): 103–105.

    Article  Google Scholar 

  • Valinsky D (1955). A determination of the optimum location of fire fighting units in New York City. Opns Res 4(3): 494–512.

    Google Scholar 

  • Van der Meer RB, Quigley J and Storbeck JE (2005). Using regression analysis to model the performance of UK Coastguard centres. J Opl Res Soc 56(6): 630–641.

    Article  Google Scholar 

  • Vanem E and Skjong R (2006). Designing for safety in passenger ships utilizing advanced evacuation analyses—A risk based approach. Saf Sci 44(2): 111–135.

    Article  Google Scholar 

  • Viswanath K and Peeta S (2003). Multicommodity maximal covering network design problem for planning critical routes for earthquake response. Transport Netw Model 1857: 1–10.

    Google Scholar 

  • Walker WE (1974). Using set-covering problem to assign fire companies to fire houses. Opns Res 22: 275–277.

    Article  Google Scholar 

  • Walker WE (1982). Models in the policy process: Past, present, and future. Interfaces 12(5): 91–100.

    Article  Google Scholar 

  • Walker WE (1989). Fire company relocation and the future of applied operations-research. Opns Res 37(3): 507–508.

    Article  Google Scholar 

  • Walker WE, Chaiken J and Ingall E (1979). Fire Department Deployment Analysis: A Public Sector Case Study: The RAND Fire Project . North-Holland: New York.

    Google Scholar 

  • Willis HH, Morral AR, Kelly TK and Medby JJ (2005). Estimating Terrorism Risk . Rand Corporation: Santa Monica, CA.

    Google Scholar 

  • Wilson C and Brewer N (1992). One-person and 2-person patrols—A review. J Crim Just 20(5): 443–454.

    Article  Google Scholar 

  • Wright PD, Liberatore MJ and Nydick RL (2006). A survey of operations research models and applications in homeland security. Interfaces 36: 514–529.

    Article  Google Scholar 

  • Yan SY and Shih YL (2007). A time-space network model for team scheduling after a major disaster. J Chinese Inst Eng 30(1): 63–75.

    Article  Google Scholar 

  • Yang JE, Jeong KS and Park CK (1994). Development of an emergency operation supporting system for nuclear-power plants. Reliab Eng Syst Safe 43(3): 281–287.

    Article  Google Scholar 

  • Yang L, Jones BF and Yang SH (2007). A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms. Eur J Opl Res 181(2): 903–915.

    Article  Google Scholar 

  • Yang SY, Tang CH and Fu TC (2008). An airline scheduling model and solution algorithms under stochastic demands. Eur J Opl Res 190(1): 22–39.

    Article  Google Scholar 

  • Yi W and Kumar A (2007). Ant colony optimization for disaster relief operations. Transport Res E-Log 43(6): 660–672.

    Article  Google Scholar 

  • Zhu ZW and McKnew MA (1993). A goal programming workload balancing optimization model for ambulance allocation—An application to Shanghai, PR China. Socio Econ Plan Sci 27(2): 137–148.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simpson, N., Hancock, P. Fifty years of operational research and emergency response. J Oper Res Soc 60 (Suppl 1), S126–S139 (2009). https://doi.org/10.1057/jors.2009.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/jors.2009.3

Keywords

Navigation