Skip to main content
Log in

Locational analysis: highlights of growth to maturity

  • Special Issue Paper
  • Published:
Journal of the Operational Research Society

Abstract

Locational analysis has grown to maturity over the last decades, from its earliest roots, to fruitfulness in a wide-ranging number of strands that join with other disciplines and applications such as environmental planning and supply chain management. This paper charts the progress of location theory in three stages: a period of early contributions, when a number of seminal geometrical and geographical problems were studied; a ‘coming of age’ with the development of defining or classical problems that have proved fundamental to much later research and a third period of new models and new applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Aikens CH (1985). Facility location models for distribution planning. Eur J Opl Res 22: 263–279.

    Article  Google Scholar 

  • Albareda-Sambola M, Fernández E and Laporte G (2007). Heuristic and lower bound for a stochastic location-routing problem. Eur J Opl Res 179: 940–955.

    Article  Google Scholar 

  • Andersson T and Värbrand P (2007). Decision support tools for ambulance dispatch and relocation. J Opl Res Soc 58: 195–201.

    Article  Google Scholar 

  • Aykin T (1994). Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem. Eur J Opl Res 79: 501–523.

    Article  Google Scholar 

  • Balinski ML (1966). On Finding Integer Solutions to Linear Programs . Mathematica: Princeton, NJ.

    Google Scholar 

  • Balinski ML and Wolfe P (1963). On Benders decomposition and a plant location problem. Working paper ARO-27. Mathematica: Princeton, NJ..

  • Ballou RH (1968). Dynamic warehouse location analysis. J of Market Res 5: 271–276.

    Article  Google Scholar 

  • Banerji SH and Fisher HB (1974). Hierarchical location analysis for integrated area planning in rural India. Pap Region Sci Assoc 33: 177–194.

    Article  Google Scholar 

  • Batta R and Chiu SS (1988). Optimal obnoxious paths on a network: Transportation of hazardous materials. Opns Res 36: 84–92.

    Article  Google Scholar 

  • Beasley JE (1993). Lagrangean heuristics for location problems. Eur J Opl Res 65: 383–399.

    Article  Google Scholar 

  • Berman O and Krass D (2002). Facility location problems with stochastic demands and congestion. In: Drezner Z. and Hamacher H. (eds). Facility Location: Applications and Theory. Springer-Verlag: Berlin, pp. 329–371.

    Chapter  Google Scholar 

  • Berman O and Wang Q (2008). Locating a semi-obnoxious facility with expropriation. Comput Opns Res 35: 392–403.

    Article  Google Scholar 

  • Berman O, Larson RC and Chiu SS (1985). Optimal server location on a network operating as a M/G/1 queue. Opns Res 33: 746–770.

    Article  Google Scholar 

  • Berman O, Hodgson MJ and Krass D (1995). Flow-interception problems. In: Drezner Z. (ed). Facility Location: A survey of Applications and Methods. Springer: New York, pp. 389–426.

    Chapter  Google Scholar 

  • Berman O, Drezner Z and Wesolowsky GO (2003). Locating service facilities whose reliability is distance dependent. Comput Opns Res 30: 1683–1695.

    Article  Google Scholar 

  • Boffey TB and Karkazis J (1993). Models and methods for location and routing decisions relating to hazardous materials. Stud Location Anal 5: 149–166.

    Google Scholar 

  • Boffey TB and Karkazis J (1995). Location, routing and the environment. In: Drezner Z. (ed). Facility Location: A Survey of Applications and Methods. Springer: New York, pp. 453–466.

    Chapter  Google Scholar 

  • Brandeau ML and Larson RC (1986). Extending and applying the hypercube model to deploy ambulances in Boston. In: Swersey A.J. and Ignall E.J. (eds). Delivery of Urban Service: With a View Towards Applications in Management Science and Operations Research. TIMS Studies in the Management Sciences Vol. 22. North-Holland: Amsterdam, pp. 121–153.

    Google Scholar 

  • Brotcorne L, Laporte G and Semet F (2003). Ambulance location and relocation models. Eur J Opl Res 147: 451–468.

    Article  Google Scholar 

  • Brimberg J, Juel H and Schöbel A (2007). Locating a circle on a sphere. Opns Res 55: 782–791.

    Article  Google Scholar 

  • Bryan DL (1998). Extensions to the hub location problem: Formulations and numerical examples. Geogr Anal 30: 315–330.

    Article  Google Scholar 

  • Cáceres T, Mesa JA and Ortega FA (2007). Locating waste pipelines to minimize their impact on marine environment. Eur J Opl Res 179: 1143–1159.

    Article  Google Scholar 

  • Campbell JF (1994). Integer programming of formulations of discrete hub location problems. Eur J Opl Res 72: 387–405.

    Article  Google Scholar 

  • Campbell JF, Ernst AT and Krishnamoorthy M (2002). Hub location problems. In: Drezner Z. and Hamacher H. (eds). Facility Location: Applications and Theory. Springer-Verlag: Berlin, pp. 373–407.

    Chapter  Google Scholar 

  • Campbell JF, Ernst AT and Krishnamoorthy M (2005a). Hub arc location problems: Part I—Introduction and results. Mngt Sci 51: 1540–1555.

    Article  Google Scholar 

  • Campbell JF, Ernst AT and Krishnamoorthy M (2005b). Hub arc location problems: Part II—Formulations and optimal algorithms. Mngt Sci 51: 1556–1571.

    Article  Google Scholar 

  • Carrizosa E, Conde E, Munoz-Marquez M and Puerto J (1995). The generalized Weber problem with expected distances. Rech Opér 29: 35–57.

    Google Scholar 

  • Chan Y, Carter WB and Burnes MD (2001). A multiple-depot, multiple-vehicle, location-routing problem with stochastically processed demands. Comput Opns Res 28: 803–826.

    Article  Google Scholar 

  • Chapman SC and White JA (1974). Probabilistic formulations of emergency service facilities location problems. Reprint series 7407, IEOR Dept., VPI&SV.

  • Church RL and Garfinkel RS (1978). Locating an obnoxious facility on a network. Transport Sci 12: 107–118.

    Article  Google Scholar 

  • Church RL and ReVelle CS (1974). The maximal covering location problem. Pap Region Sci Assoc 32: 101–118.

    Article  Google Scholar 

  • Church RL and Scaparra MP (2007). Protecting critical assets: The r-interdiction median problem with fortification. Geog Anal 39: 129–146.

    Article  Google Scholar 

  • Church RL, Stoms DM and Davis FW (1996). Reserve selection as a maximal covering location problem. Biol Conserv 76: 105–112.

    Article  Google Scholar 

  • Church RL, Murray AT and Weintraub A (1998). Locational issues in forest management. Locat Sci 6: 137–153.

    Article  Google Scholar 

  • Church RL, Scaparra MP and Middleton R (2004). Identifying critical infrastructure: The median and covering facility interdiction problems. Ann Assoc Am Geogr 94: 491–502.

    Article  Google Scholar 

  • Cooper L (1963). Location–allocation problems. Opns Res 11: 331–343.

    Article  Google Scholar 

  • Cooper L (1964). Heuristic methods for location-allocation problems. SIAM Rev 6: 37–53.

    Article  Google Scholar 

  • Dasci A and Laporte G (2005). A continuous model for multi-store competitive location. Opns Res 53: 263–280.

    Article  Google Scholar 

  • Daskin MS (1983). A maximum expected covering location model: Formulation, properties and heuristic solution. Transport Sci 17: 48–70.

    Article  Google Scholar 

  • Daskin MS (2008). What you should know about location modeling. Naval Res Logis 55: 283–294.

    Article  Google Scholar 

  • Daskin MS and Stern E (1981). A hierarchical objective set covering model for emergency medical service deployment. Transport Sci 25: 137–152.

    Article  Google Scholar 

  • Daskin MS, Coullard C and Shen Z-JM (2002). An inventory-location model: Formulation, solution algorithm and computational results. Ann Opns Res 110: 83–106.

    Article  Google Scholar 

  • Delaunay B (1934). Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7: 793–800.

    Google Scholar 

  • Drezner Z, Klamroth K, Schöbel A and Wesolowsky GO (2002). The Weber problem. In: Drezner Z. and Hamacher H. (eds). Facility Location: Applications and Theory. Springer-Verlag: Berlin, pp. 1–36.

    Chapter  Google Scholar 

  • Eaton DJ, Church RL, Bennett VL and Hamon BL (1981). On deployment of health resources in rural Valle del Cauca, Colombia. TIMS Stud Mngt Sci 17: 331–359.

    Google Scholar 

  • Eaton DJ, Sánchez HML, Lantigua RR and Morgan J (1986). Determining ambulance deployment in Santo Domingo, Dominican Republic. J Opl Res Soc 37: 113–126.

    Article  Google Scholar 

  • Efroymson MA and Ray TL (1966). A branch-bound algorithm for plant location. Opns Res 14: 361–368.

    Article  Google Scholar 

  • Eiselt HA (2007). Locating landfills—Optimization vs. reality. Eur J Opl Res 179: 1040–1049.

    Article  Google Scholar 

  • Eiselt HA and Laporte G (1996). Sequential location problems. Eur J Opl Res 96: 217–231.

    Article  Google Scholar 

  • Eiselt HA, Laporte G and Thisse J-F (1993). Competitive location models: A framework and bibliography. Transport Sci 27: 44–54.

    Article  Google Scholar 

  • Elshafei AN (1977). Hospital layout as a quadratic assignment problem. Opl Res Quart 28: 167–179.

    Article  Google Scholar 

  • Erkut E and Verter V (1995). Hazardous materials logistics. In: Drezner Z. (ed). Facility Location: A Survey of Applications and Methods. Springer: New York, pp. 467–506.

    Chapter  Google Scholar 

  • Erlenkotter D (1978). A dual-based procedure for uncapacitated facility location. Opns Res 26: 992–1009.

    Article  Google Scholar 

  • Ernst AT and Krishnamoorthy M (1996). An exact solution approach based on shortest-paths for p-hub median problems. INFORMS J Comput 10: 149–162.

    Article  Google Scholar 

  • Ernst AT and Krishnamoorthy M (1998). Exact and heuristic algorithms for the uncapacitated multiple allocation p-hub median problem. Eur J Opl Res 104: 100–112.

    Article  Google Scholar 

  • Fleischmann M, Bloemhof-Ruwaard JM, Dekker R, van der Laan E, van Nunen JAEE and Van Wassenhove LN (1997). Quantitative models for reverse logistics: A review. Eur J Opl Res 103: 1–17.

    Article  Google Scholar 

  • Geoffrion AM and Powers RF (1995). Twenty years of strategic distribution system design: An evolutionary perspective. Interfaces 25(5): 105–127.

    Article  Google Scholar 

  • Gendreau M, Laporte G and Parent I (2000). Heuristics for the location of inspection stations on a network. Naval Res Logis 47: 287–303.

    Article  Google Scholar 

  • Goldman AJ (1969). Optimal locations for centers in a network. Transport Sci 3: 352–360.

    Article  Google Scholar 

  • Goldman AJ and Dearing PM (1975). Concepts of optimal location for partially noxious facilities. ORSA Bull 23(1): B-31.

    Google Scholar 

  • Gottinger HW (1988). A computational model for solid waste management with application. Eur J Opl Res 35: 350–364.

    Article  Google Scholar 

  • Hakimi SL (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Opns Res 12: 445–450.

    Article  Google Scholar 

  • Hakimi SL (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Opns Res 13: 462–475.

    Article  Google Scholar 

  • Hakimi SL (1983). On locating new facilities in a competitive environment. Eur J Opl Res 12: 29–55.

    Article  Google Scholar 

  • Harper PR, Shahani AK, Gallagher J and Bowie C (2005). Planning health services with explicit geographical considerations: A stochastic location–allocation approach. Omega 33: 141–152.

    Article  Google Scholar 

  • Hinojosa Y, Kalcsics J, Nickel S, Puerto J and Velten S (2008). Dynamic supply chain design with inventory. Comput Opns Res 35: 373–391.

    Article  Google Scholar 

  • Hodgson MJ (1981). The location of public facilities intermediate to the journey to work. Eur J Opl Res 6: 199–204.

    Article  Google Scholar 

  • Hodgson MJ (1988). An hierarchical location-allocation model for primary health care delivery in a developing area. Soc Sci Med 26: 153–161.

    Article  Google Scholar 

  • Hotelling H (1929). Stability in competition. Econ J 39: 41–57.

    Article  Google Scholar 

  • Isard W (1969). General Theory: Social, Political, Economic, and Regional, with Particular Reference to Decision-making Analysis . MIT Press: Cambridge, MA.

    Google Scholar 

  • Klincewicz JG and Luss H (1987). A dual-based algorithm for multiproduct uncapacitated facility location. Transport Sci 21: 198–206.

    Article  Google Scholar 

  • Kariv O and Hakimi SL (1979a). An algorithmic approach to network location problems. Part I: The P-centers. SIAM J Appl Math 37: 515–538.

    Google Scholar 

  • Kariv O and Hakimi SL (1979b). An algorithmic approach to network location problems. Part II: The P-median. SIAM J Appl Math 37: 539–560.

    Article  Google Scholar 

  • Koopmans TC and Beckmann MJ (1957). Assignment problems and the location of economic activities. Econometrica 25: 52–76.

    Article  Google Scholar 

  • Krarup J and Pruzan PM (1983). The simple plant location problem: Survey and synthesis. Eur J Opl Res 12: 36–81.

    Article  Google Scholar 

  • Kuehn AA and Hamburger MJ (1963). A heuristic program for locating warehouses. Mngt Sci 9: 643–666.

    Article  Google Scholar 

  • Kuhn HW (1967). On a pair of dual nonlinear programs. In: Abadie J. (ed). Nonlinear Programming. North-Holland: Amsterdam, pp. 37–54.

    Google Scholar 

  • Labbé M, Laporte G and Rodríguez-Martín I (1998). Path, Tree and Cycle Location. In: Crainic T.G. and Laporte G. (eds). Fleet Management and Logistics. Kluwer: Boston, pp. 187–204.

    Chapter  Google Scholar 

  • Laporte G (1988). Location-Routing problems. In: Golden B.L. and Assad A.A. (eds). Vehicle Routing: Methods and Studies. North-Holland: Amsterdam, pp. 163–198.

    Google Scholar 

  • Laporte G and Rodríguez-Martín I (2007). Locating a cycle in a transportation or a telecommunications network. Networks 50: 92–108.

    Article  Google Scholar 

  • Laporte G, Mesa JA and Ortega FA (2000). Optimization methods for the planning of rapid transit systems. Eur J Opl Res 122: 1–10.

    Article  Google Scholar 

  • Laporte G, Nobert Y and Arpin D (1986). An exact algorithm for solving a capacitated location-routing problem. Ann Opns Res 6: 293–310.

    Article  Google Scholar 

  • Larson RC (1974). A hypercube queuing model for facility location and redistricting in urban emergency services. Comput Ops Res 1: 67–95.

    Article  Google Scholar 

  • Lawler EL (1963). The quadratic assignment problem. Mngt Sci 9: 586–599.

    Article  Google Scholar 

  • Logendran R and Terrell MP (1988). Uncapacitated plant location–allocation problems with price sensitive stochastic demands. Comput Opns Res 15: 189–198.

    Article  Google Scholar 

  • Loiola EM, Maia de Abreu NM, Boaventura-Netto PO, Hahn P and Querido T (2007). A survey for the quadratic assignment problem. Eur J Opl Res 176: 657–690.

    Article  Google Scholar 

  • Louveaux FV (1993). Stochastic location analysis. Locat Sci 1: 127–154.

    Google Scholar 

  • Maranzana FE (1964). On the location of supply points to minimize transport costs. Opl Res Quart 15: 261–270.

    Article  Google Scholar 

  • Marianov V and ReVelle CS (1995). Siting emergency services. In: Drezner Z. (ed). Facility Location: A Survey of Applications and Methods. Springer: New York, pp. 199–223.

    Chapter  Google Scholar 

  • Marianov V and Serra D (1998). Probabilistic, maximal covering location–allocation models for congested systems. J Region Sci 38: 401–424.

    Article  Google Scholar 

  • Marianov V and Serra D (2001). Hierarchical location–allocation models for congested systems. Eur J Opl Res 135: 195–208.

    Article  Google Scholar 

  • Marianov V, ReVelle CS and Snyder S (2008). Selecting compact habitat reserves for species with differential habitat size needs. Comput Opns Res 35: 475–487.

    Article  Google Scholar 

  • Marín A and Pelegrin B (1998). The return plant location problem: Modelling and resolution. Eur J Opl Res 104: 375–392.

    Article  Google Scholar 

  • Melo MT, Nickel S and Saldanha da Gama F (2005). Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Comput Opns Res 33: 181–208.

    Article  Google Scholar 

  • Melo MT, Nickel S and Saldanha da Gama F (2009). Facility location and supply chain management–A review. Eur J Opl Res 196: 401–412.

  • Mesa JA and Boffey TB (1998). A review of extensive facility location in networks. Eur J Opl Res 95: 592–603.

    Article  Google Scholar 

  • Miranda G, Luna HPL, Mateus GR and Ferreira RPM (2005). A performance guarantee heuristic for electronic components placement problems including thermal effects. Comput Ops Res 32: 2937–2957.

    Article  Google Scholar 

  • Mirchandani PB and Odoni AR (1979). Location of medians on stochastic networks. Transport Sci 13: 85–97.

    Article  Google Scholar 

  • Nagy G and Salhi S (2007). Location-routing: Issues, models and methods. Eur J Opl Res 177: 649–672.

    Article  Google Scholar 

  • O'Kelly ME (1986a). The location of interacting hub facilities. Transport Sci 20: 92–106.

    Article  Google Scholar 

  • O'Kelly ME (1986b). Activity levels at hub facilities in interacting networks. Geogr Anal 18: 343–353.

    Article  Google Scholar 

  • O'Kelly ME (1987). A quadratic integer program for the location of interacting hub facilities. Eur J Opl Res 32: 393–404.

    Article  Google Scholar 

  • O'Kelly ME (1998). On the allocation of a subset of nodes to a mini-hub in a package delivery network. Papers in Regional Science. J RSAI 77: 77–99.

    Google Scholar 

  • Önal H and Wang Y (2007). A graph theory approach for designing conservation reserve networks with minimal fragmentation. Networks 51: 142–152.

    Article  Google Scholar 

  • Rahman S and Smith DK (2000). Use of location–allocation models in health service development planning in developing nations. Eur J Opl Res 123: 437–452.

    Article  Google Scholar 

  • Repede JF and Bernardo JJ (1994). Developing and validating a decision support system for locating emergency medical vehicles in Louisville, Kentucky. Eur J Opl Res 75: 567–581.

    Article  Google Scholar 

  • ReVelle CS and Eiselt HA (2005). Location analysis: A synthesis and survey. Eur J Opl Res 165: 1–19.

    Article  Google Scholar 

  • ReVelle CS and Swain R (1970). Central facilities location. Geogr Anal 2: 30–42.

    Article  Google Scholar 

  • ReVelle CS and Williams JC (2002). Reserve design and facility siting. In: Drezner Z. and Hamacher H. (eds). Facility Location: Applications and Theory. Springer-Verlag: Berlin, pp. 307–328.

    Chapter  Google Scholar 

  • ReVelle CS, Eiselt HA and Daskin MS (2008). A bibliography for some fundamental problem categories in discrete location science. Eur J Opl Res 184: 817–848.

    Article  Google Scholar 

  • Rosing KE and Hodgson MJ (1996). A systematic classification of applications of location-allocation models. Belgian J Opns Res, Stat Comput Sci 36: 77–108.

    Google Scholar 

  • Salema MIG, Barbosa-Povoa AP and Novais AQ (2007). An optimization model for the design of a capacitated multi-product reverse logistics network with uncertainty. Eur J Opl Res 179: 1063–1077.

    Article  Google Scholar 

  • Slater PJ (1975). Maximum facility location. J Res NBS B Math Sci 79: 107–115.

    Google Scholar 

  • Slater PJ (1982). Locating central paths in a graph. Transport Sci 16: 1–18.

    Article  Google Scholar 

  • Smith HK, Harper PR, Potts CN and Thyle A (2009). Planning sustainable community health schemes in rural areas of developing countries. Eur J Opl Res 193: 768–777.

    Article  Google Scholar 

  • Snyder LV (2006). Facility location under uncertainty: A review. IIE Trans 38: 547–564.

    Article  Google Scholar 

  • Srivastava SK (2008). Network design for reverse logistics. Omega 36: 535–548.

    Article  Google Scholar 

  • Suzuki A and Okabe A (1995). Using Voronoi diagrams. In: Drezner Z. (ed). Facility Location: A Survey of Applications and Methods. Springer: New York, pp. 103–118.

    Chapter  Google Scholar 

  • Talluri S and Baker RC (2002). A multi-phase mathematical programming approach for effective supply chain design. Eur J Opl Res 141: 544–558.

    Article  Google Scholar 

  • Tansel BC, Francis RL and Lowe TJ (1983a). Location on networks: A survey, Parts I and II. Mngt Sci 29: 482–497.

    Article  Google Scholar 

  • Tansel BC, Francis RL and Lowe TJ (1983b). Location on networks: A survey, Parts I and II. Mngt Sci 29: 498–511.

    Article  Google Scholar 

  • Teitz MB and Bart P (1968). Heuristic methods for estimating the generalized vertex median of a weighted graph. Opns Res 16: 955–961.

    Article  Google Scholar 

  • Toregas C, Swain R, ReVelle C and Bergman L (1971). The location of emergency service facilities. Opns Res 19: 1363–1373.

    Article  Google Scholar 

  • Underhill LG (1994). Optimal and suboptimal reserve selection algorithms. Biol Conserv 70: 85–87.

    Article  Google Scholar 

  • Verter V and Dasci A (2002). The plant location and flexible technology acquisition problem. Eur J Opl Res 136: 366–382.

    Article  Google Scholar 

  • Verter V and Dincer MC (1995). Global manufacturing strategy. In: Drezner Z. (ed). Facility Location: A Survey of Applications and Methods. Springer-Verlag: New York, pp. 263–282.

    Chapter  Google Scholar 

  • Van Roy T and Erlenkotter D (1982). A dual-based procedure for dynamic facility location. Mngt Sci 28: 1091–1195.

    Article  Google Scholar 

  • Vidal CJ and Goetschalckx M (1997). Strategic production-distribution models: A critical review with emphasis on global supply chain models. Eur J Opl Res 98: 1–18.

    Article  Google Scholar 

  • Voronoi G (1907). Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J Reine Angew Math 133: 97–178.

    Google Scholar 

  • Wang Q, Batta R and Rump CM (2003). Facility location models for immobile servers with stochastic demand. Naval Res Logis 51: 137–152.

    Article  Google Scholar 

  • Warszawski A (1973). Multidimensional location problems. Opl Res Quart 24: 165–179.

    Article  Google Scholar 

  • Wasner M and Zäpfel G (2004). An integrated multi-depot hub-location vehicle routing model for network planning of parcel service. Int J Prod Econ 90: 403–419.

    Article  Google Scholar 

  • Watson-Gandy CDT and Dohrn PJ (1973). Depot location with van salesmen—A practical approach. Omega 1: 321–329.

    Article  Google Scholar 

  • Webb MHJ (1968). Cost functions in the location of depots for multi-delivery journeys. Opl Res Quart 19: 311–320.

    Article  Google Scholar 

  • Weber A (1909). Über den Standort der Industrien . Mohr: Tübingen, Germany.

    Google Scholar 

  • Weiszfeld E (1937). Sur le point pour lequel la somme des distances de n points donnés est minimum. Tôhoko Math J 43: 355–386.

    Google Scholar 

  • Williams AC (1963). A stochastic transportation problem. Opns Res 11: 759–770.

    Article  Google Scholar 

  • Williams JC (2008). Optimal reserve site selection with distance requirements. Comput Opns Res 35: 475–487.

    Article  Google Scholar 

  • Yasenovskiy VS and Hodgson MJ (2007). Hierarchical location–allocation with spatial choice interaction modeling. Ann Assoc Am Geogr 97: 496–511.

    Article  Google Scholar 

  • Yi W and Özdamar L (2007). A dynamic logistics coordination model for evacuation and support in disaster response activities. Eur J Opl Res 179: 1177–1193.

    Article  Google Scholar 

  • Zhou J and Liu B (2003). New stochastic models for capacitated location–allocation problem. Comput Indust Eng 45: 111–125.

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to two referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H K Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, H., Laporte, G. & Harper, P. Locational analysis: highlights of growth to maturity. J Oper Res Soc 60 (Suppl 1), S140–S148 (2009). https://doi.org/10.1057/jors.2008.172

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/jors.2008.172

Keywords

Navigation