Skip to main content
Log in

A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center

  • Case-oriented Paper
  • Published:
Journal of the Operational Research Society

Abstract

The rapid development of computer and information technology has made project evaluation and selection a difficult task at the Kennedy Space Center (KSC) Shuttle Project Engineering Office. Decision Makers (DMs) are required to consider a vast amount of intuitive and analytical information in the decision process. Fuzzy Euclid is a Multi-criteria Decision Analysis (MCDA) model that captures the DMs’ beliefs through a series of intuitive and analytical methods such as the analytic hierarchy process (AHP) and subjective probability estimation. A defuzzification method is used to obtain crisp values from the subjective judgments provided by multiple DMs. These crisp values are synthesized with Entropy and the theory of displaced ideal to assist the DMs in their selection process by plotting the alternative projects in a four-zone graph based on their Euclidean distance from the ‘ideal choice’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abacoumkin C and Ballis A (2004). Development of an expert system for the evaluation of conventional and innovative technologies in the intermodal transport area. Eur J Opl Res 152: 420–436.

    Article  Google Scholar 

  • Aguarón J and Moreno-Jiménez JM (2000). Local stability intervals in the analytic hierarchy process. Eur J Opl Res 125: 113–132.

    Article  Google Scholar 

  • Ali YM and Zhang L (2001). A methodology for fuzzy modeling of engineering systems. Fuzzy Sets and Systems 118: 181–197.

    Article  Google Scholar 

  • Bailey D, Goonetilleke A and Campbell D (2003). A new fuzzy multicriteria evaluation method for group site selection in GIS. Journal of Multicriteria Decision Analysis 12: 337–347.

    Article  Google Scholar 

  • Barzilai J (1997). Deriving weights from pairwise comparison matrices. J Opl Res Soc 48: 1226–1232.

    Article  Google Scholar 

  • Barzilai J and Golany B (1994). AHP rank reversal, normalization and aggregation rules. INFOR 32: 57–63.

    Google Scholar 

  • Belton V and Stewart TJ (2002). Multiple criteria decision analysis: an integrated approach. Kluwer: Norwell, MA.

    Book  Google Scholar 

  • Bouyssou D (1990). Building criteria: A prerequisite for MCDA. In: Bana e Costa CA (ed). Readings in MCDA. Springer-Verlag: Heidelberg, pp. 58–80.

    Google Scholar 

  • Brun WAT and Teigen KH (1988). Verbal probabilities: Ambiguous, context-dependent, or both? Organ Behav Hum Dec 41: 390–404.

    Article  Google Scholar 

  • Budescu DV and Wallsten TS (1985). Consistency in interpretation of probabilistic phrases. Organ Behav Hum Dec 36: 391–405.

    Article  Google Scholar 

  • Costa JP, Melo P, Godinho P and Dias LC (2003). The AGAP system: A GDSS for project analysis and evaluation. Eur J Opl Res 145: 287–303.

    Article  Google Scholar 

  • De Kluyver CA and Moskowitz H (1984). Assessing scenario probabilities via interactive goal programming. Mngt Sci 30: 273–278.

    Article  Google Scholar 

  • De Luca A and Termini S (1972). A definition of a non-probabilistic entropy in the setting of fuzzy sets theory. Inform Control 20: 301–312.

    Article  Google Scholar 

  • Dubois D and Prade H (1993). Fuzzy sets and probability: Misunderstandings, bridges and gaps. In: Proceedings of the Second IEEE International Conference on Fuzzy Systems, IEEE: San Francisco, pp 1059–1068.

  • Dubois D and Prade H (2000). Fundamentals of fuzzy sets. Kluwer Academic Publishers: Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Dyer JS (1990). Remarks on the analytic hierarchy process. Mngt Sci 36: 249–258.

    Article  Google Scholar 

  • Eleye-Datubo AG, Wall A and Wang J (2008). Marine and offshore safety assessment by incorporative risk modeling in a fuzzy-Bayesian network of an induced mass assignment paradigm. Risk Analysis 28(1): 95–112.

    Article  Google Scholar 

  • Escobar MT, Aguarón J and Moreno-Jiménez JM (2004). A note on AHP group consistency for the row geometric mean priorization procedure. Eur J Opl Res 153: 318–322.

    Article  Google Scholar 

  • Expert Choice [Computer Software] (2006). Decision Support Software Inc.: McLean, VA.

  • Festinger L (1964). Conflict, Decision and Dissonance. Tavistock Publications Ltd: London, Great Britain.

    Google Scholar 

  • Friedlob GT and Schleifer LLF (1999). Fuzzy logic: Application for audit risk and uncertainty. Manage Auditing J 14(3): 127–137.

    Article  Google Scholar 

  • Girotra K, Terwiesch C and Ulrich KT (2007). Valuing R&D projects in a portfolio: Evidence from the pharmaceutical industry. Mngt Sci 53: 1452–1466.

    Article  Google Scholar 

  • Gouveia MC, Dias LC and Antunes CH (2008). Additive DEA based on MCDA with imprecise information. J Opl Res Soc 59: 54–63.

    Article  Google Scholar 

  • Graves SB and Ringuest JL (1991). Evaluating competing R&D investments. Res Technol Manage 34(4): 32–36.

    Google Scholar 

  • Harker PT and Vargas LG (1987). The theory of ratio scale estimation: Saaty's analytic hierarchy process. Mngt Sci 33: 1383–1403.

    Article  Google Scholar 

  • Harker PT and Vargas LG (1990). Reply to ‘Remarks on the analytic hierarchy process' by J.S. Dyer. Mngt Sci 36: 269–273.

    Article  Google Scholar 

  • Hazelrigg GA Jr., and Huband FL (1985). RADSIM—A methodology for large-scale R&D program assessment. IEEE T Eng Mngt 32(3): 106–116.

    Article  Google Scholar 

  • Ho W (2008). Integrated analytic hierarchy process and its applications—A literature review. Eur J Opl Res 186: 211–228.

    Article  Google Scholar 

  • Hsieh T-Y, Lu S-T and Tzeng G-H (2004). Fuzzy MCDM approach for planning and design tenders selection in public office buildings. Int J Proj Mngt 22: 573–584.

    Article  Google Scholar 

  • Hwang CL and Lin MJ (1987). Group decision making under multiple criteria. Lecture Notes in Economics and Mathematical Systems, No. 281. Springer: Berlin.

  • Intan R and Mukaidono M (2004). Fuzzy conditional probability relations and their applications in fuzzy information systems. Knowl Inform Syst 6: 345–365.

    Article  Google Scholar 

  • Iz P and Gardiner RL (1993). Analysis of multiple criteria decision support systems for cooperative groups. Group Decis and Negot 2: 61–79.

    Article  Google Scholar 

  • Jahan-Shahi H, Shayan E and Masood S (1999). Cost estimation in flat plate processing using fuzzy sets. Comput Indu Eng 37(1,2): 485–488.

    Article  Google Scholar 

  • Jessup LM and Valacich JS (1993). Group Support Systems. New Perspectives. Macmillan: New York, NY.

    Google Scholar 

  • Julien B (1994). Water quality management with imprecise information. Eur J Opl Res 76: 15–27.

    Article  Google Scholar 

  • Kim SH and Ahn BS (1999). Interactive group decision making procedure under incomplete information. Eur J Opl Res 116(3): 498–507.

    Article  Google Scholar 

  • Kleindorfer PR, Kunreuther HC and Schoemaker PJH (1993). Decision Sciences: An Integrative Perspective. Cambridge University Press: New York, NY.

    Book  Google Scholar 

  • Klir GJ and Yuan B (1995). Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice Hall: Upper Saddle River, NJ.

    Google Scholar 

  • Koriat A, Lichtenstein S and Fischoff B (1980). Reasons for confidence. J Exp Psychol 6: 107–118.

    Google Scholar 

  • Leskinen P and Kangas J (2005). Rank reversals in multi-criteria decision analysis with statistical modelling of ratio-scale pairwise comparisons. J Opl Res Soc 56: 855–861.

    Article  Google Scholar 

  • Leyva-López JC and Fernández-González E (2003). A new method for group decision support based on ELECTRE III methodology. Eur J Opl Res 148: 14–27.

    Article  Google Scholar 

  • Liesiö J, Mild P and Salo A (2007). Preference programming for robust portfolio modeling and project selection. Eur J Opl Res 181: 1488–1505.

    Article  Google Scholar 

  • Lootsma FA, Mensch TCA and Vos FA (1990). Multi-criteria analysis and budget reallocation in long-term research planning. Eur J Opl Res 47: 293–305.

    Article  Google Scholar 

  • Mandakovic T and Souder WE (1985). An interactive decomposable heuristic for project selection. Mngt Sci 31: 1257–1271.

    Article  Google Scholar 

  • Mathieu RG and Gibson JE (1993). A methodology for large-scale R&D planning based on cluster analysis. IEEE T Eng Mngt 40: 283–292.

    Article  Google Scholar 

  • Mehrez A (1988). Selecting R&D projects: A case study of the expected utility approach. Technovation 8: 299–311.

    Article  Google Scholar 

  • Merkhofer MW (1987). Quantifying judgmental uncertainty: Methodology, experiences, and insights. IEEE T Syst Man Cyb 17: 741–752.

    Article  Google Scholar 

  • Mojsilović A, Ray B, Lawrence R and Takriti S (2007). A logistic regression framework for information technology outsourcing lifecycle management. Comput Oper Res 34: 3609–3627.

    Article  Google Scholar 

  • Moore JR and Baker NR (1969). An analytical approach to scoring model design—Application to research and development project selection. IEEE T Eng Mngt 16(3): 90–98.

    Article  Google Scholar 

  • Muralidhar K, Santhanam R and Wilson RL (1990). Using analytic hierarchy process for information system project selection. Inform Mngt 18(2): 87–95.

    Google Scholar 

  • Muzzioli S and Reynaerts H (2007). The solution of fuzzy linear systems by non-linear programming: a financial application. Eur J Opl Res 177: 1218–1231.

    Article  Google Scholar 

  • Osawa Y (2003). How well did the new Sumitomo Electric project ranking method predict performance? Res Dev Mngt 33: 343–350.

    Google Scholar 

  • Osawa Y and Murakami M (2002). Development and application of a new methodology of evaluating industrial R&D projects. Res Dev Mngt 32: 79–85.

    Google Scholar 

  • Paisittanand S and Olson DL (2006). A simulation study of IT outsourcing in the credit card business. Eur J Opl Res 175: 1248–1261.

    Article  Google Scholar 

  • Poyhonen MA, Hamalainen RP and Salo AA (1997). An experiment on the numerical modelling of verbal ratio statements. J Multi-Criteria Decis Anal 6(1): 1–10.

    Article  Google Scholar 

  • Roy B and Bouyssou D (1987). Famille de critères: Problème de cohérence et de dépendence. Decument du Lamsade 37, Universite Paris-Dauphine.

  • Roychowdhury S and Pedrycz W (2001). A survey of defuzzification strategies. Int J Intell Syst 16: 679–695.

    Article  Google Scholar 

  • Runkler TA (1996). Extended defuzzification methods and their properties. IEEE T 1: 694–700.

    Google Scholar 

  • Saaty TL (1977). A scaling method for priorities in hierarchical structures. J Math Psychol 15: 234–281.

    Article  Google Scholar 

  • Saaty TL (1990a). How to make a decision: The analytic hierarchy process. Eur J Opl Res 48: 9–26.

    Article  Google Scholar 

  • Saaty TL (1990b). An exposition of the AHP in reply to the paper ‘Remarks on the analytic hierarchy process'. Mngt Sci 36: 259–268.

    Article  Google Scholar 

  • Saaty TL (2006). Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur J Opl Res 168: 557–570.

    Article  Google Scholar 

  • Santhanam R and Kyparisis J (1995). A multiple criteria decision model for information system project selection. Comput Oper Res 22: 807–818.

    Article  Google Scholar 

  • Schelling TC (1960). The Strategy of Conflict. Harvard University Press: Cambridge, MA.

    Google Scholar 

  • Schniederjans M and Santhanam R (1993). A multi-objective constrained resource information system project selection method. Eur J Oper Res 70: 244–253.

    Article  Google Scholar 

  • Schoemaker PJH (1993). Multiple scenario development: Its conceptual and behavioral foundation. Strateg Mngt J 14: 193–213.

    Article  Google Scholar 

  • Schoemaker PJH and Russo JE (1993). A pyramid of decision approaches. Calif Mngt Rev 36(1): 9–31.

    Article  Google Scholar 

  • Shannon CE (1948). A mathematical theory of communication. Bell Systems Technical Journal 27: 379–423, 625–656.

  • Shim JP (1989). Bibliographical research on the analytic hierarchy process (AHP). Socio-Econ Plan Sci 23: 161–167.

    Article  Google Scholar 

  • Spetzler CS and Stael von Holstein C-AS (1975). Probability encoding in decision analysis. Mngt Sci 22: 340–358.

    Article  Google Scholar 

  • Stover JG and Gordon TJ (1978). Cross-impact analysis. In: Fowles J (ed). Handbook of futures research. Greenwood: Westport, CN, pp. 301–328.

    Google Scholar 

  • Tavana M (2002). Euclid: Strategic alternative assessment matrix. J Multi-Criteria Decis Anal 11: 75–96.

    Article  Google Scholar 

  • Tavana M (2004). A subjective assessment of alternative mission architectures for the human exploration of Mars at NASA using multicriteria decision making. Comput Oper Res 31: 1147–1164.

    Article  Google Scholar 

  • Tavana M (2006). A priority assessment multi-criteria decision model for human spaceflight mission planning at NASA. J Opl Res Soc 57: 1197–1215.

    Article  Google Scholar 

  • Tavana M and Banerjee S (1995). Strategic assessment model (SAM): A multiple criteria decision support system for evaluation of strategic alternatives. Decis Sci 26: 119–143.

    Article  Google Scholar 

  • Tavana M, Kennedy D and Mohebbi B (1997). An applied study using the analytic hierarchy process to translate common verbal phrases to numerical probabilities. J Behav Decis Making 10: 133–150.

    Article  Google Scholar 

  • Thomas H (1985). Decision analysis and strategic management of research and development. Res Dev Mngt 15(1): 3–22.

    Google Scholar 

  • Triantaphyllou E (2000). Multi-criteria Decision Making Methods: A Comparative Study. Kluwer Academic Publishers: Boston, MA.

    Book  Google Scholar 

  • Triantaphyllou E and Baig K (2005). The impact of aggregating benefit and cost criteria in four MCDA methods. IEEE T Eng Mngt 52: 213–226.

    Article  Google Scholar 

  • Triantaphyllou E and Mann SH (1995). Using the analytic hierarchy process for decision making in engineering applications: Some challenges. Int J Ind Eng-Appl P 2(1): 35–44.

    Google Scholar 

  • Vaidya OS and Kumar S (2006). Analytic hierarchy process: An overview of applications. Eur J Opl Res 169: 1–29.

    Article  Google Scholar 

  • Valls A and Torra V (2000). Using classification as an aggregation tool in MCDM. Fuzzy Set and Syst 15(1): 159–168.

    Article  Google Scholar 

  • Van Leekwijk W and Kerre F (1999). Defuzzification: Criteria and classification. Fuzzy Sets and Systems 118: 159–178.

    Article  Google Scholar 

  • Vickers B (1992). Using GDSS to examine the future European automobile industry. Futures 24: 789–812.

    Article  Google Scholar 

  • Wang J and Hwang W-L (2007). A fuzzy set approach for R&D portfolio selection using a real options valuation model. Omega 35: 247–257.

    Article  Google Scholar 

  • Weigelt K and Macmillan I (1988). An integrative strategic analysis framework. Strateg Mngt J 9: 27–40.

    Article  Google Scholar 

  • Xu Z (2000). On consistency of the weighted geometric mean complex judgement matrix in AHP. Eur J Opl Res 126: 683–687.

    Article  Google Scholar 

  • Yang JB and Xu DL (2002). On the evidential reasoning algorithm for multiattribute decision analysis under uncertainty. IEEE T Syst Man Cy A 32: 289–304.

    Article  Google Scholar 

  • Zadeh LA (1965). Fuzzy sets. Inform Control 8: 338–353.

    Article  Google Scholar 

  • Zeleny MA (1974). Concept of compromise solutions and the method of the disptaced ideal. Comput Oper Res 1(3-4): 479–496.

    Article  Google Scholar 

  • Zeleny MA (1982). Multiple criteria decision making. McGraw-Hill: New York, NY.

    Google Scholar 

  • Zimmermann H-J (1996). Fuzzy Set Theory and Its Applications. Kluwer Academic Publishers: Boston, MA.

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers and the editor for their insightful comments and suggestions. This research was supported in part by NASA grants NGT-52605 and NGT-60002. The authors thank the Shuttle Project Engineering Office at Kennedy Space Center for their support and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tavana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavana, M., Sodenkamp, M. A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center. J Oper Res Soc 61, 1459–1470 (2010). https://doi.org/10.1057/jors.2009.107

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/jors.2009.107

Keywords

Navigation