Skip to main content
Log in

Virtual reality for medical training: the state-of-the-art

  • Original Article
  • Published:
Journal of Simulation

Abstract

Virtual reality (VR) medical simulations deliver a tailored learning experience that can be standardized, and can cater to different learning styles in ways that cannot be matched by traditional teaching. These simulations also facilitate self-directed learning, allow trainees to develop skills at their own pace and allow unlimited repetition of specific scenarios that enable them to remedy skills deficiencies in a safe environment. A number of simulators have been validated and have shown clear benefits to medical training. However, while graphical realism is high, realistic haptic feedback and interactive tissues are limited for many simulators. This paper reviews the current status and benefits of haptic VR simulation-based medical training for bone and dental surgery, intubation procedures, eye surgery, and minimally invasive and endoscopic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Abrahamson S, Denson J and Wolf R (2004). Effectiveness of a simulator in training anesthesiology residents. Quality and Safety in Health Care 13 (5): 395–397.

    Article  Google Scholar 

  • Allard J et al (2007). SOFA—An Open Source Framework for Medical Simulation. Medicine Meets Virtual Reality 15. IOS Press: Long Beach, CA, pp 13–18.

    Google Scholar 

  • Barach P and Johnson JK (2009). Reducing variation in adverse events during the academic year. British Medical Journal 339 (1): 3949.

    Article  Google Scholar 

  • Barry-Issenberg S, McGaghie W, Petrusa E, Lee Gordon D and Scalese R (2005). Features and uses of high-fidelity medical simulations that lead to effective learning: A BEME systematic review. Medical Teacher 27 (1): 10–28.

    Article  Google Scholar 

  • Basdogan C, Ho CH and Srinivasan MA (1999). Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces. Studies in Health Technology and Informatics 62: 38–44.

    Google Scholar 

  • Bashankaev B, Baido S and Wexner S (2011). Review of available methods of simulation training to facilitate surgical education. Surgical Endoscopy 25 (1): 28–35.

    Article  Google Scholar 

  • Berkley J, Turkiyyah G, Berg D, Ganter M and Weghorst S (2004). Real-time finite element modeling for surgery simulation: An application to virtual suturing. IEEE Trans Vis Comput Graph 10 (3): 314–325.

    Article  Google Scholar 

  • Buchanan JA (2004). Experience with virtual reality-based technology in teaching restorative dental procedures. Journal of Dental Education 68 (12): 1258–1265.

    Google Scholar 

  • Chalasani V, Cool DW, Sherebrin S, Fenster A, Chin J and Izawa JI (2011). Development and validation of a virtual reality transrectal ultrasound guided prostatic biopsy simulator. Can Urol Assoc J 5 (1): 19–26.

    Article  Google Scholar 

  • Choi C, Han H, An B and Kim J (2006). Development of a surgical simulator for laparoscopic esophageal procedures. Conference Proceedings of the Engineering in Medicine and Biology Society 1 (1): 819–822.

    Article  Google Scholar 

  • Coles T, Meglan D and John N (2011). The role of haptics in medical training simulators: A survey of the state of the art. IEEE Transactions on Haptics 4 (1): 51–66.

    Article  Google Scholar 

  • Cooke M, Irby D, Sullivan W and Ludmerer K (2006). American medical education 100 years after the flexner report. New England Journal of Medicine 355 (13): 1339–1344.

    Article  Google Scholar 

  • Cotin S et al (2005). Collaborative development of an open framework for medical simulation. MICCAI Open-Source Workshop. Vol. 34. Copenhagen.

    Google Scholar 

  • Crassin C, Neyret F, Lefebvre S and Eisemann E (2009). GigaVoxels: Ray-guided streaming for efficient and detailed voxel rendering. Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games. ACM: Boston, MA, pp. 15–22.

  • De Visser H et al (2010). Developing a next generation colonoscopy simulator. International Journal of Image and Graphics 10 (2): 203–217.

    Article  Google Scholar 

  • Ericsson K (2004). Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Academic Medicine 79 (10): 70.

    Article  Google Scholar 

  • Feudner EM, Engel C, Neuhann IM, Petermeier K, Bartz-Schmidt KU and Szurman P (2009). Virtual reality training improves wet-lab performance of capsulorhexis: Results of a randomized, controlled study. Graefes Archive for Clinical and Experimental Ophthalmology 247 (7): 955–963.

    Article  Google Scholar 

  • Gallagher A and Cates C (2004). Virtual reality training for the operating room and cardiac catheterisation laboratory. The Lancet 364 (9444): 1538–1540.

    Article  Google Scholar 

  • Goswami P, Schlegel P, Solenthaler B and Pajarola R (2010). Interactive SPH simulation and rendering on the GPU. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association: Madrid, Spain, pp. 55–64.

  • Grantcharov T, Kristiansen V, Bendix J, Bardram L, Rosenberg J and Funch-Jensen P (2004). Randomized clinical trial of virtual reality simulation for laparoscopic skills training. British Journal of Surgery 91 (2): 146–150.

    Article  Google Scholar 

  • Haller G, Myles PS, Taffe P, Perneger TV and Wu CL (2009). Rate of undesirable events at beginning of academic year: Retrospective cohort study. British Medical Journal 339 (1): 3974.

    Article  Google Scholar 

  • Haluck R and Krummel T (2000). Computers and virtual reality for surgical education in the 21st century. Archives of Surgery 135 (7): 786.

    Article  Google Scholar 

  • Harders M, Bajka M, Spaelter U, Tuchschmid S, Bleuler H and Székely G (2005a). Highly-realistic, immersive training environment for hysteroscopy. Studies in Health Technology and Informatics 119: 176.

    Google Scholar 

  • Harders M, Steinemann D, Gross M and Szekely G (2005b). A hybrid cutting approach for hysteroscopy simulation. Lecture Notes in Computer Science 3750 (2): 567.

    Article  Google Scholar 

  • Heinrichs WL, Srivastava S, Dev P and Chase RA (2004). LUCY: A 3-D pelvic model for surgical simulation. Journal of the American Association of Gynecologic Laparoscopists 11 (3): 326–331.

    Article  Google Scholar 

  • Heng PA et al (2004). A virtual-reality training system for knee arthroscopic surgery. IEEE Transactions on Information Technology in Biomedicine 8 (2): 217–227.

    Article  Google Scholar 

  • Hikichi T et al (2000). Vitreous surgery simulator. Archives of Ophthalmology 118 (12): 1679.

    Article  Google Scholar 

  • Ikonen T, Antikainen T, Silvennoinen M, Isojärvi J, Mäkinen E and Scheinin T (2012). Virtual reality simulator training of laparoscopic cholecystectomies—A systematic review. Scandinavian Journal of Surgery 101 (1): 5–12.

    Article  Google Scholar 

  • Jackson A et al (2002). Developing a virtual reality environment in petrous bone surgery: A state-of-the-art review. Ontology & Neurotology 23 (2): 111–121.

    Article  Google Scholar 

  • Kallstrom R, Hjertberg H, Kjolhede H and Svanvik J (2005). Use of a virtual reality, real-time, simulation model for the training of urologists in transurethral resection of the prostate. Scandinavian Journal of Urology and Nephrology 39 (4): 313–320.

    Article  Google Scholar 

  • Khalifa Y, Bogorad D, Gibson V, Peifer J and Nussbaum J (2006). Virtual reality in ophthalmology training. Survey of Ophthalmology 51 (3): 259–273.

    Article  Google Scholar 

  • Kurenov SN, Punak S, Kim M, Peters J and Cendan JC (2006). Simulation for training with the Autosuture Endo Stitch device. Surgical Innovation 13 (4): 283–287.

    Article  Google Scholar 

  • Laurell C, Söderberg P, Nordh L, Skarman E and Nordqvist P (2004). Computer-simulated phacoemulsification. Ophthalmology 111 (4): 693–698.

    Article  Google Scholar 

  • LeBlanc VR, Urbankova A, Hadavi F and Lichtenthal RM (2004). A preliminary study in using virtual reality to train dental students. Journal of dental education 68 (3): 378–383.

    Google Scholar 

  • Lee W (1980). The acquisition of clinical ward skills during undergraduate medical training. Journal of Medical Education 55 (12): 1029–1031.

    Google Scholar 

  • Lim F, Brown I, McColl R, Seligman C and Alsaraira A (2006). A visual graphic/haptic rendering model for hysteroscopic procedures. Journal of the Australasian College of Physical Scientists and Engineers in Medicine 29 (1): 57–61.

    Google Scholar 

  • Luengo V, Larcher A and Tonetti J (2011). Design and implementation of a visual and haptic simulator in a platform for a TEL system in percutaneuos orthopedic surgery. Studies in health technology and informatics 163: 324–328.

    Google Scholar 

  • Maciel A, Halic T, Lu Z, Nedel LP and De S (2009). Using the PhysX engine for physics-based virtual surgery with force feedback. International Journal of Medical Robotics 5 (3): 341–353.

    Article  Google Scholar 

  • Maciel A, Liu Y, Ahn W, Singh TP, Dunnican W and De S (2008). Development of the VBLaST: A virtual basic laparoscopic skill trainer. International Journal of Medical Robotics 4 (2): 131–138.

    Article  Google Scholar 

  • Mahr MA and Hodge DO (2008). Construct validity of anterior segment anti-tremor and forceps surgical simulator training modules: Attending versus resident surgeon performance. Journal of Cataract & Refractive Surgery 34 (6): 980–985.

    Article  Google Scholar 

  • Mayrose J, Kesavadas T, Chugh K, Joshi D and Ellis D (2003). Utilization of virtual reality for endotracheal intubation training. Resuscitation 59 (1): 133–138.

    Article  Google Scholar 

  • Moody L, Arthur J, Zivanovic A and Waterworth A (2003). A part-task approach to haptic knee arthroscopy training. Studies In Health Technology and Informatics 94: 216–218.

    Google Scholar 

  • Morris D, Girod S, Barbagli F and Salisbury K (2005). An interactive simulation environment for craniofacial surgical procedures. Studies in Health Technology and Informatics 111: 334–341.

    Google Scholar 

  • Morris D, Sewell C, Blevins N, Barbagli F and Salisbury K (2004). A collaborative virtual environment for the simulation of temporal bone surgery. In: Westwood JD et al (eds.). Medical Image Computing and Computer-Assisted Intervention (MICCAI). Springer: Rennes, France: 3 319–327.

    Google Scholar 

  • Niederer P, Weiss S, Caduff R, Bajka M, Szekely G and Harders M (2009). Uterus models for use in virtual reality hysteroscopy simulators. European Journal of Obstetrics & Gynecology and Reproductive Biology 144 (Suppl 1): S90–S95.

    Article  Google Scholar 

  • Okrainec A et al (2009). Development of a virtual reality haptic Veress needle insertion simulator for surgical skills training. Studies In Health Technology and Informatics 142: 233–238.

    Google Scholar 

  • Owens JD, Houston M, Luebke D, Green S, Stone JE and Phillips JC (2008). GPU Computing. Proceedings of the IEEE. IEEE: USA, 96(5): 879–899.

  • Padilla MA, Altamirano F, Arambula F and Marquez J (2007). Mechatronic resectoscope emulator for a surgery simulation training system of the prostate. Conference Proceedings of the IEEE Engineering in Medicineand Biology Society 2007 1750–1753.

  • Pedowitz RA, Esch J and Snyder S (2002). Evaluation of a virtual reality simulator for arthroscopy skills development. Arthroscopy 18 (6): E29.

    Article  Google Scholar 

  • Pohlenz P et al (2010). Virtual dental surgery as a new educational tool in dental school. Journal of Cranio-Maxillofacial Surgery 38 (8): 560–564.

    Article  Google Scholar 

  • Pories WJ, Smout JC, Morris A and Lewkow VE (1994). U.S. health care reform: Will it change postgraduate surgical education? World Journal of Surgery 18 (5): 745–752.

    Article  Google Scholar 

  • Privett B, Greenlee E, Rogers G and Oetting TA (2010). Construct validity of a surgical simulator as a valid model for capsulorhexis training. Journal of Cataract & Refractive Surgery 36 (11): 1835–1838.

    Article  Google Scholar 

  • Rhienmora P (2010). Haptic augmented reality dental trainer with automatic performance assessment, http://dl.acm.org/citation.cfm?id=1720054, accessed 20 July 2011.

  • Roberts K, Bell R and Duffy A (2006). Evolution of surgical skills training. World Journal of Gastroenterology 12 (20): 3219.

    Article  Google Scholar 

  • Rodrigues M, Gillies D and Charters P (1998). Modelling and simulation of the tongue during laryngoscopy. Computer Networks and ISDN Systems 30 (20–21): 2037–2045.

    Article  Google Scholar 

  • Rodrigues M, Gillies D and Charters P (2000). A biomechanical model of the upper airways for simulating laryngoscopy. Computer Methods in Biomechanics and Biomedical Engineering 4 (2): 127–148.

    Article  Google Scholar 

  • Rodrigues M, Gillies D and Charters P (2001). Realistic Deformable Models for Simulating the Tongue during Laryngoscopy. International Workshop on Medical Imaging and Augmented Reality. IEEE: USA.

  • Ruthenbeck GS, Hobson J, Carney AS, Sacks R and Reynolds KJ (2013). Towards photorealism in endoscopic sinus surgery simulation. American Journal of Rhinology and Allergy 27 (1): 6–12.

    Google Scholar 

  • Ruthenbeck GS, Tan SB, Carney AS, Hobson JC and Reynolds KJ (2012). A virtual-reality subtotal tonsillectomy simulator. Journal of Laryngology & Otology 126 (Suppl 2): S8–S13.

    Article  Google Scholar 

  • Samosky J et al (2011). Toward a comprehensive hybrid physical-virtual reality simulator of peripheral anesthesia with ultrasound and neurostimulator guidance. Studies in Health Technology and Informatics 163: 552.

    Google Scholar 

  • Samur E, Flaction L, Spaelter U, Bleuler H, Hellier D and Ourselin S (2008). A haptic interface with motor/brake system for colonoscopy simulation. The 2008 Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE Computer Society: USA.

  • Schijven M and Jakimowicz J (2003). Virtual reality surgical laparoscopic simulators. Surgical Endoscopy 17 (12): 1943–1950.

    Article  Google Scholar 

  • Schuppe O, Wagner C, Koch F and Manner R (2009). EYESi ophthalmoscope—A simulator for indirect ophthalmoscopic examinations. Studies in Health Technology and Informatics 142: 295–300.

    Google Scholar 

  • Seevinck J et al (2006). A simulation-based training system for surgical wound debridement. Studies in Health Technology and Informatics 119: 491–496.

    Google Scholar 

  • Selvander M and Asman P (2012). Virtual reality cataract surgery training: Learning curves and concurrent validity. Acta Ophthalmologica 90 (5): 412–417.

    Article  Google Scholar 

  • Serra L et al (1998). Multimodal volume-based tumor neurosurgery planning in the virtual workbench. Medical Image Computing and Computer-Assisted Intervention. Lecture Notes in Computer Science: Springer, Vol. 1496, pp 1007–1015.

    Google Scholar 

  • Seymour N (2008). VR to OR: A review of the evidence that virtual reality simulation improves operating room performance. World Journal of Surgery 32 (2): 182–188.

    Article  Google Scholar 

  • Seymour N et al (2002). Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Annals of Surgery 236 (4): 458–464.

    Article  Google Scholar 

  • Sinclair MJ, Peifer JW, Haleblian R, Luxenberg MN, Green K and Hull DS (1995). Computer-simulated eye surgery. A novel teaching method for residents and practitioners. Ophthalmology 102 (3): 517–521.

    Article  Google Scholar 

  • Solomon B et al (2011). Simulating video-assisted thoracoscopic lobectomy: A virtual reality cognitive task simulation. Journal of Thoracic and Cardiovascular Surgery 141 (1): 249–255.

    Article  Google Scholar 

  • Sowerby LJ, Rehal G, Husein M, Doyle PC, Agrawal S and Ladak HM (2010). Development and face validity testing of a three-dimensional myringotomy simulator with haptic feedback. Journal of Otolaryngology—Head & Neck Surgery 39 (2): 122–129.

    Google Scholar 

  • Spicer MA, van Velsen M, Caffrey JP and Apuzzo ML (2004). Virtual reality neurosurgery: A simulator blueprint. Neurosurgery 54 (4): 783–797, discussion 788–797.

    Article  Google Scholar 

  • Stredney D et al (2002). Temporal bone dissection simulation—An update. Studies in Health Technology and Informatics 85: 507–513.

    Google Scholar 

  • Thomas G, Johnson L, Dow S and Stanford C (2001). The design and testing of a force feedback dental simulator. Computer Methods and Programs in Biomedicine 64 (1): 53–64.

    Article  Google Scholar 

  • Tolsdorff B et al (2007). Preoperative simulation of bone drilling in temporal bone surgery. International Journal of Computer Assisted Radiology and Surgery 2 (Suppl 1): 160–180.

    Google Scholar 

  • Tolsdorff B et al (2010). Virtual reality: A new paranasal sinus surgery simulator. The Laryngoscope 120 (2): 420–426.

    Google Scholar 

  • Urbankova A (2010). Impact of computerized dental simulation training on preclinical operative dentistry examination scores. Journal of Dental Education 74 (4): 402–409.

    Google Scholar 

  • Vloeberghs M, Glover A, Benford S, Jones A, Wang P and Becker A (2007). Virtual neurosurgery, training for the future. British Journal of Neurosurgery 21 (3): 262–267.

    Article  Google Scholar 

  • Vozenilek J, Huff J and Reznek M (2004). See one, do one, teach one: Advanced technology in medical education. Academic Emergency Medicine 11 (11): 1149–1154.

    Article  Google Scholar 

  • Westebring-van der Putten E, Goossens R, Jakimowicz J and Dankelman J (2008). Haptics in minimally invasive surgery-a review. Minimally Invasive Therapy & Allied Technologies 17 (1): 3–16.

    Article  Google Scholar 

  • Wiet GJ, Schmalbrock P, Powell K and Stredney D (2005). Use of ultra-high-resolution data for temporal bone dissection simulation. Journal of Otolaryngology—Head & Neck Surgery 133 (6): 911–915.

    Article  Google Scholar 

  • Wiet GJ, Stredney D, Sessanna D, Bryan JA, Welling DB and Schmalbrock P (2002). Virtual temporal bone dissection: An interactive surgical simulator. Journal of Otolaryngology—Head & Neck Surgery 127 (1): 79–83.

    Article  Google Scholar 

  • Zhang L, Chen W, Ebert DS and Peng Q (2007). Conservative voxelization. The Visual Computer 23 (9): 783–792.

    Article  Google Scholar 

  • Ziv A, Wolpe P, Small S and Glick S (2003). Simulation-based medical education: An ethical imperative. Academic Medicine 78 (8): 783–788.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Alexandra Pearce for assistance with the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruthenbeck, G., Reynolds, K. Virtual reality for medical training: the state-of-the-art. J Simulation 9, 16–26 (2015). https://doi.org/10.1057/jos.2014.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/jos.2014.14

Keywords

Navigation