Skip to main content
Log in

A framework for ontology-based temporal modelling of business intelligence

  • Article
  • Published:
Knowledge Management Research & Practice

Abstract

Ontologies provide the means for supporting business intelligence (BI) and information management through the interpretation of unstructured content. On the basis of the semantics of ontologies, information can be extracted from natural language texts, and on a further level of processing knowledge that facilitates BI can be discovered. However, in order to act this way, ontologies need to be properly modelled and evolved so that they are constantly aligned with changes that occur in the real world. This paper presents a framework for modelling the temporal aspects of a semantic knowledge base with direct impact on the BI process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. http://www.w3.org/2000/talks/1206-xml2k-tbl/.

  2. http://www.businesswire.com.

  3. http://news.com.com.

  4. Note that ‘[‘ indicates a closed space, while ‘)’ indicates an open space.

  5. http://www.biovista.com.

References

  • Ait-Braham A, Theodoulidis B and Karvelis G (1994) Conceptual modelling and manipulation of temporal databases. In 13th International Conference on the Entity Relationship Approach (ER ‘94) (Loucopoulos P, Ed), pp 296–313, Springer LNCS, Manchester, UK.

    Google Scholar 

  • Aleksovski Z, Klein M, Katen WT and Harmelen FV (2006) Matching unstructured vocabularies using a background ontology. In International Conference on Knowledge Engineering and Knowledge Management (EKAW’06) (Staab S and Svatek V, Eds), pp 182–197, Springer-Verlag, Podebrady, Czech Republic.

    Google Scholar 

  • Allen JF (1983) Maintaining knowledge about temporal intervals. Communications of the ACM 26 (11), 832–843.

    Article  Google Scholar 

  • Bechhofer S, Harmelen FV, Hendler J, Horrocks I, McGuinness DL, Patel-Schneider PF and Stein LA (2004) OWL web ontology language reference. In W3C Recommendation (Dean M and Schreiber G, Eds), World Wide Web Consortium [WWW document] http://www.w3.org/TR/owl-ref/.

  • Bertino E, Ferrari E and Guerrini G (1996) A formal temporal object-oriented data model. In 5th International Conference on Extending Database Technology (EDBT) (Apers PMG, Bouzeghoub M and Gardarin G, Eds), pp 342–356, Springer LNCS, Avignon, France.

    Google Scholar 

  • Bertino E, Ferrari E, Guerrini G and Merlo I (1998) Extending the ODMG object model with time. In 12th European Conference on Object-Oriented Programming (ECCOP ‘98) (Jul E, Ed), pp 41–66, Springer LNCS, Brussels, Belgium.

    Google Scholar 

  • Cattell RGG and Atwood T (Eds) (1996) The Object Database Standard: Odmg-93: Release 1.2. Morgan Kaufmann Publications, San Francisco.

    Google Scholar 

  • Doan A, Madhavan J, Domingos P and Halevy A (2004) Ontology matching: a machine learning approach. In Handbook on Ontologies in Information Systems (Staab S and Studer R, Eds), pp 385–404, Springer-Verlag, New York.

    Google Scholar 

  • Ehrig M and Sure Y (2004) Ontology mapping – an integrated approach. In 1st European Semantic Web Symposium (Bussler C, Davies J, Fensel D and Studer R, Eds), pp 76–91, Springer LNCS, Heraklion, Greece.

    Google Scholar 

  • Elmasri R and Navathe SH (1989) Fundamentals of Database Systems, 1st edn, Benjamin/Cummings, Redwood City, CA.

    Google Scholar 

  • Elmasri R, Wuu G and Kouramajian V (1993) A temporal model and query language for EER databases. In Temporal Databases: Theory, Design, and Implementation (Tansel AU, Clifford J, Gadia S, Jajodia S, Segev A and Snodgrass RT, Eds), pp 212–229, Benjamin/Cummings, Redwood City, CA.

    Google Scholar 

  • Fellbaum C (1998) WordNet: An Electronic Lexical Database. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Gadia SK and Yeung CS (1988) A generalized model for a relational temporal database. In ACM SIGMOD Conference (Haas LM and Tiwary A, Eds), pp 251–259, ACM Press, Chicago, IL.

    Google Scholar 

  • Goralwalla I and Özsu MT (1993) Temporal extensions to a uniform behavioral object model. In 12th International Confernce on Entity-Relationship Approach (ER’93) (Elmasri R, Kouramajian V and Thalheim B, Eds), pp 115–127, Springer LNCS, Dallas, TX.

    Google Scholar 

  • Guerrini G, Bertino E and Bal R (1994) A formal definition of the chimera object-oriented data model. Technical report ESPRIT Project 6333.

  • Käfer W and Schöning H (1992a) Mapping a version model to a complex-object data model. In 8th International Conference on Data Engineering (ICDE) (Golshani F, Ed), pp 348–357, IEEE Computer Society, Tempe, AZ.

    Google Scholar 

  • Käfer W and Schöning H (1992b) Realising a temporal complex-object data model. In ACM SIGMOD International Conference on Management of Data (Stonebraker M, Ed), pp 266–275, IEEE Computer Society, San Diego, CA.

    Google Scholar 

  • Kakoudakis I (1996) The TAU temporal object model. MPhil Thesis, UMIST, Manchester, UK.

  • Kakoudakis I and Theodoulidis B (1999) TAU: Towards a temporal object-oriented DBMS. In 9th International Database Conference (IDC) (Fong J, Ed), City University of Hong Kong Press, Hong Kong.

    Google Scholar 

  • Kalfoglou Y and Schorlemmer M (2003) IF-Map: an ontology mapping method based on information flow theory. Journal on Data Semantics 1 (1), 98–127.

    Google Scholar 

  • Klein M, Ding Y, Fensel D and Omelayenko B (2002) Ontology management: storing, aligning and maintaining ontologies. In Towards the Semantic Web: Ontology-Driven Knowledge Management (Davies J, Fensel D and Harmelen VF, Eds), pp 47–70, John Wiley and Sons Ltd, New York.

    Google Scholar 

  • Knublauch H (2004) Ontology-driven software development in the context of the semantic web: an example scenario with Protégé/OWL. In 1st International Workshop on the Model-Driven Semantic Web (MDSW2004) (Frankel DS, Kendall EF and McGuinness DL, Eds), Monterey, California, USA. [WWW document] http://www.knublauch.com/publications/MDSW2004.pdf.

  • Maedche A, Motik B, Silva N and Volz R (2002) MAFRA – A MApping FRAmework for distributed ontologies. In 13th European Conference on Knowledge Engineering and Knowledge Management (EKAW-2002) (Gámez-Pérez A and Richard Benjamins V, Eds), pp 235–250, Springer LNCS, Madrid, Spain.

    Google Scholar 

  • McGuinness DL, Fikes R, Rice J and Wilder S (2000) The chimaera ontology environment. In 17th National Conference on Artificial Intelligence (AAAI 2000) (Kautz H and Porter B, Eds), pp 1123–1124, AAAI Press/The MIT Press, Austin, TX.

    Google Scholar 

  • Mikroyannidis A (2007) Heraclitus II: a framework for ontology management and evolution. PhD Thesis, Manchester Business School, University of Manchester, Manchester.

  • Mikroyannidis A and Theodoulidis B (2006) Heraclitus II: a framework for ontology management and evolution. In 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006) (Nishida T, Shi Z, Visser U, Wu X, Liu J, Wah B, Cheung W and Cheung Y-M, Eds), pp 514–521, IEEE Computer Society, Hong Kong, China.

    Google Scholar 

  • Mikroyannidis A and Theodoulidis B (2007) Heraclitus: a framework for semantic web adaptation. IEEE Internet Computing 11 (3), 45–52.

    Article  Google Scholar 

  • Mikroyannidis A, Theodoulidis B and Persidis A (2006) PARMENIDES: towards business intelligence discovery from web data. In 2006 IEEE /WIC/ACM International Conference on Web Intelligence (WI 2006) (Nishida T, Shi Z, Visser U, Wu X, Liu J, Wah B, Cheung W and Cheung Y-M, Eds), pp 1057–1060, IEEE Computer Society, Hong Kong, China.

    Google Scholar 

  • Mitra P, Wiederhold G and Decker S (2001) A scalable framework for interoperation of information sources. In 1st International Semantic Web Working Symposium (SWWS’01) (Cruz IF, Decker S, Euzenat J and McGuinness DL, Eds), pp 317–329, Stanford University, Stanford, CA.

    Google Scholar 

  • Mitschang B (1988) Towards a unified view of design data and knowledge representation. In 2nd Int’l Conf. on Expert Database Systems (Kerschberg L, Ed), pp 133–159, Benjamin Cummings, Vienna, VA.

    Google Scholar 

  • Noy N and Musen M (2003) The PROMPT suite: interactive tools for ontology merging and mapping. Technical report, SMI, Stanford University, CA, USA. [WWW document] http://smi-web.stanford.edu/auslese/smi-web/research/details.jsp?PubId=973.

  • Özsu MT, Peters RJ, Szafron D, Irani B, Lipka A and Munoz A (1995) TIGUKAT: a uniform behavioral objectbase management system. VLDB Journal: Very Large Data Bases 4 (3), 445–492.

    Article  Google Scholar 

  • Pelekis N, Theodoulidis B, Kopanakis I and Theodoridis Y (2004) Literature review of spatio-temporal database models. The Knowledge Engineering Review 19 (3), 235–274.

    Article  Google Scholar 

  • Schimmoller BK (2001) Getting connected: leveraging the power of IT. Power Engineering 105 (1), 44–47.

    Google Scholar 

  • Schreiber G (2000) Knowledge Engineering and Management: The CommonKADS Methodology. MIT Press, Cambridge, MA.

    Google Scholar 

  • Schreiber G, Wielinga B, De Hoog R, Akkermans H and Van De Velde W (1994) CommonKADS: a comprehensive methodology for KBS development. IEEE Expert 9 (6), 28–37.

    Article  Google Scholar 

  • Snodgrass R and Ahn I (1985) A taxonomy of time in databases. In ACM SIGMOD International Conference on the Management of Data (Navathe SB, Ed.), pp 236–246, ACM Press, Austin, TX.

    Google Scholar 

  • Su SYW and Chen HH (1993) Modeling and management of temporal data in object-oriented knowledge bases. Workshop on an Infrastructure for Temporal Databases, Arlington, TX.

  • Su SYW and Chen HM (1991) A temporal knowledge representation model OSAM*/T and its query language OQL/T. In 17th International Conference on Very Large Data Bases (VLDB) (Lohman GM, Sernadas A and Camps R, Eds), pp 431–442, Morgan Kaufmann, Barcelona, Spain.

    Google Scholar 

  • Su SYW, Lam H and Krishnamurthy V (1989) An Object-Oriented Semantic Association Model (OSAM*). In Artificial Intelligence: Manufacturing Theory and Practice (Kumara ST, Soyster AL and Kashyap RL, Eds), pp 463–494, Industrial Engineering and Management Press, Norcross, GA.

    Google Scholar 

  • The Gene Ontology Consortium (2000) Gene ontology: tool for the unification of biology. Nature Genetics 25 (1), 25–29.

  • Theodoulidis B, Ait-Braham A and Karvelis G (1994) The ORES temporal DBMS and the ERT-SQL query language. In 5th International Conference on Database and Expert Systems Applications (DEXA) (Karagiannis D, Ed), pp 270–279, Springer-Verlag, Athens, Greece.

    Chapter  Google Scholar 

  • W3C (2004a) OWL web ontology language guide. In W3C Recommendation (Smith MK, Welty C and McGuinness DL, Eds), World Wide Web Consortium. [WWW document] http://www.w3.org/TR/owl-guide/.

  • W3C (2004b) OWL web ontology language overview. In W3C Recommendation (McGuinness DL and Harmelen FV, Eds), World Wide Web Consortium [WWW document] http://www.w3.org/TR/owl-features/.

Download references

Acknowledgements

The authors would like to thank the CEO of Biovista, Dr. Andreas Persidis, for providing the case study and its supporting material, including requirements, data sets, and helpful feedback on the paper.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikroyannidis, A., Theodoulidis, B. A framework for ontology-based temporal modelling of business intelligence. Knowl Manage Res Pract 10, 188–199 (2012). https://doi.org/10.1057/kmrp.2012.2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1057/kmrp.2012.2

Keywords

Navigation